Isothermal transient Eulerian–Lagrangian simulation of the turbulent gas–solid flow in a cyclone gasifier with two inlet tubes at 890 °C has been performed. The single-phase gas flow is modeled using SSG Reynolds stress turbulence model. Ten thousand representative solid particles of different sizes are injected from each inlet continuously at every second of simulation time. Particles are finally stopped as soon as they arrive at the outlet or reach the bottom plate of the gasifier. The effect of particle-to-gas coupling on the pressure and velocity of the flow and particles motion inside the gasifier is studied. The numerical approach can reasonably predict the impact of particle load on the gas flow as presented in the experimental results. Single particles are traveled throughout the transient gas flow field by using Lagrangian approach. High temperature of the gas flow inside the gasifier has significant effects on the swirl intensity reduction, damping the turbulence in the core region, pressure, and particle behaviors. However, the presence of solid particles does not have a notable influence on the swirl intensity and turbulence.

References

1.
Risberg
,
M.
,
2013
, “
Entrained Flow Gasification of Biomass: On Atomisation, Transport Processes and Gasification Reactions
,”
Ph.D. thesis
, Luleå University of Technology, Lulea, Sweden.
2.
Syred
,
C.
,
Fick
,
W.
,
Griffiths
,
A. J.
, and
Syred
,
N.
,
2004
, “
Cyclone Gasifier and Cyclone Combustor for the Use of Biomass Derived Gas in the Operation of a Small Gas Turbine in Cogeneration Plants
,”
Fuel
,
83
(
17–18
), pp.
2381
2392
.
3.
Hadijafari
,
P.
,
Hellström
,
J. G. I.
, and
Gebart
,
B. R.
,
2017
, “
Turbulence Modelling of a Single-Phase Flow Cyclone Gasifier
,”
Eng.
,
9
(
9
), pp.
779
799
.
4.
Obermair
,
S.
,
Gutschi
,
C.
,
Woisetschläger
,
J.
, and
Staudinger
,
G.
,
2005
, “
Flow Pattern and Agglomeration in the Dust Outlet of a Gas Cyclone Investigated by Phase Doppler Anemometry
,”
Powder Technol.
,
156
(
1
), pp.
34
42
.
5.
Derksen
,
J. J.
,
Van den Akker
,
H. E. A.
, and
Sundaresan
,
S.
,
2008
, “
Two-Way Coupled Large-Eddy Simulations of the Gas-Solid Flow in Cyclone Separators
,”
AIChE J.
,
54
(
4
), pp.
872
885
.
6.
Obermair
,
S.
,
Woisetschläger
,
J.
, and
Staudinger
,
G.
,
2003
, “
Investigation of the Flow Pattern in Different Dust Outlet Geometries of a Gas Cyclone by Laser Doppler Anemometry
,”
Powder Technol.
,
138
(
2–3
), pp.
239
251
.
7.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
8.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
2006
, “
Modelling the Pressure–Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
(
1
), pp.
245
272
.
9.
Hoffmann
,
A. C.
, and
Stein
,
L. E.
,
2008
,
Gas Cyclones and Swirl Tubes: Principles, Design and Operation
, 2nd ed.,
Springer-Verlag
,
Berlin
.
10.
ANSYS
,
2013
, “
ANSYS CFX-Solver Theory Guide Release 14.5
,” ANSYS, Canonsburg, PA.
11.
Hoffmann
,
A. C.
,
Arends
,
H.
, and
Sie
,
H.
,
1991
, “
An Experimental Investigation Elucidating the Nature of the Effect of Solids Loading on Cyclone Performance
,”
Filtr. Sep.
,
28
(
3
), pp.
188
193
.
12.
Nikrityuk
,
P. A.
, and
Meyer
,
B.
,
2014
,
Gasification Processes: Modeling and Simulation
,
Wiley-VCH
, Weinheim,
Germany
.
13.
Obermair
,
S.
,
2002
, “
Einfluss der Feststoffaustragungsgeometrie auf die Abscheidung und den Druckverlust eines Gaszyklons
,” Ph.D. thesis, Graz University of Technology, Graz, Austria.
14.
Misiulia
,
D.
,
Andersson
,
A. G.
, and
Lundström
,
T. S.
,
2017
, “
Large Eddy Simulation Investigation of an Industrial Cyclone Separator Fitted With a Pressure Recovery Deswirler
,”
Chem. Eng. Technol.
,
40
(
4
), pp.
709
718
.
15.
Hoekstra
,
A. J.
,
2000
, “
Gas Flow Field and Collection Efficiency of Cyclone Separators
,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.
16.
Boysan
,
F.
,
Ayers
,
W. H.
, and
Swithenbank
,
J.
,
1982
, “
A Fundamental Mathematical Modelling Approach to Cyclone Design
,”
Chem. Eng. Res. Des.
,
60
(
4
), pp.
222
230
.
17.
Minier
,
J. P.
,
Simonin
,
O.
, and
Gabillard
,
M.
,
1991
, “
Numerical Modelling of Cyclone Separators
,” 11th International Conference on Fluidzed Bed Combustion, New York, pp. 1251–1259.
18.
Misiulia
,
D.
,
Andersson
,
A. G.
, and
Lundström
,
T. S.
,
2015
, “
Computational Investigation of an Industrial Cyclone Separator With Helical-Roof Inlet
,”
Chem. Eng. Technol.
,
38
(
8
), pp.
1425
1434
.
19.
ANSYS
,
2013
, “
ANSYS CFX-Solver Modeling Guide, Release 14.5
,” ANSYS, Canonsburg, PA.
20.
Vhathvarothai
,
N.
,
Ness
,
J.
, and
Yu
,
Q. J.
,
2014
, “
An Investigation of Thermal Behaviour of Biomass and Coal During Copyrolysis Using Thermogravimetric Analysis
,”
Int. J. Energy Res.
,
38
(
9
), pp.
1145
1154
.
21.
Wang
,
B.
,
Xu
,
D. L.
,
Chu
,
K. W.
, and
Yu
,
A. B.
,
2006
, “
Numerical Study of Gas–Solid Flow in a Cyclone Separator
,”
Appl. Math. Modell.
,
30
(
11
), pp.
1326
1342
.
22.
Baumbach
,
G.
,
1996
,
Air Quality Control
,
Springer-Verlag
,
Berlin
.
23.
Risberg
,
M.
,
Öhrman
,
O. G. W.
,
Gebart
,
B. R.
,
Nilsson
,
P. T.
,
Gudmundsson
,
A.
, and
Sanati
,
M.
,
2014
, “
Influence From Fuel Type on the Performance of an Air-Blown Cyclone Gasifier
,”
Fuel
,
116
, pp.
751
759
.
You do not currently have access to this content.