An experimental study aimed at evaluating the influence of Mach number on the base pressure fluctuations of a cylindrical afterbody was performed over a wide range of Mach numbers from subsonic to supersonic speeds. Time-averaged results indicate that the coefficient of base pressure drops with the increase in the freestream Mach number at subsonic speeds and increases at supersonic Mach numbers. The coefficient of root-mean-square of the pressure fluctuations follows a decreasing trend with the increase in the Mach number. Examination of the spectra reveals different mechanisms dominate the pressure fluctuations from the center to the periphery of the base as well as with the change in the Mach number. Analysis of the azimuthal coherence indicates that all the dominant tones in the spectra can be classified either into a symmetric or an antisymmetric mode at subsonic Mach numbers. However, at supersonic Mach numbers, all the dominant tones in the spectra are symmetric in nature. The results from the cross-correlation suggest that two possible mechanisms of recirculation bubble pulsing and convective motions/vortex shedding are driving the dynamics on the base at subsonic Mach numbers. However, at supersonic Mach numbers, only single mechanism of the recirculation bubble pulsing dominates. Moreover, it indicates that the symmetric mode is associated with the dynamics of the recirculation bubble and the antisymmetric mode is related to the convective motions/vortex shedding.

References

References
1.
Kawai
,
S.
, and
Fujii
,
K.
,
2007
, “
Time-Series and Time-Averaged Characteristics of Subsonic to Supersonic Base Flows
,”
AIAA J.
,
45
(
1
), pp.
289
301
.
2.
Eldred
,
K. M.
,
1961
, “
Base Pressure Fluctuations
,”
J. Acoust. Soc. Am.
,
33
(
1
), pp.
59
63
.
3.
Shvets
,
A. I.
,
1979
, “
Base Pressure Fluctuations
,”
Fluid Dyn.
,
14
(
3
), pp.
394
401
.
4.
Simon
,
F.
,
Deck
,
S.
,
Guillen
,
P.
,
Cayzac
,
R.
, and
Merlen
,
A.
,
2007
, “
Zonal-Detached-Eddy Simulation of Projectiles in the Subsonic and Transonic Regimes
,”
AIAA J.
,
45
(
7
), pp.
1606
1619
.
5.
Forsythe
,
J. R.
,
Hoffmann
,
K. A.
,
Cummings
,
R. M.
, and
Squires
,
K. D.
,
2002
, “
Detached-Eddy Simulation With Compressibility Corrections Applied to a Supersonic Axisymmetric Base Flow
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
911
923
.
6.
Saile
,
D.
,
Gülhan
,
A.
,
Henckels
,
A.
,
Glatzer
,
C.
,
Statnikov
,
V.
, and
Meinke
,
M.
,
2013
, “
Investigations on the Turbulent Wake of a Generic Space Launcher Geometry in the Hypersonic Flow Regime
,”
Prog. Flight Phys.
,
5
, pp.
209
234
.
7.
Viswanath
,
P. R.
,
1996
, “
Flow Management Techniques for Base and Afterbody Drag Reduction
,”
Prog. Aerosp. Sci.
,
32
(
2–3
), pp.
79
129
.
8.
Choi
,
H.
,
Jeon
,
W. P.
, and
Kim
,
J.
,
2008
, “
Control of Flow Over a Bluff Body
,”
Annu. Rev. Fluid Mech.
,
40
(
4
), pp.
113
139
.
9.
Martín-Alcántara
,
A.
,
Sanmiguel-Rojas
,
E.
,
Gutiérrez-Montes
,
C.
, and
Martínez-Bazán
,
C.
,
2014
, “
Drag Reduction Induced by the Addition of a Multi-Cavity at the Base of a Bluff Body
,”
J. Fluids Struct.
,
48
, pp.
347
361
.
10.
Evrard
,
A.
,
Cadot
,
O.
,
Herbert
,
V.
,
Ricot
,
D.
,
Vigneron
,
R.
, and
Délery
,
J.
,
2016
, “
Fluid Force and Symmetry Breaking Modes of a 3D Bluff Body With a Base Cavity
,”
J. Fluids Struct.
,
61
, pp.
99
114
.
11.
Jackson
,
R.
,
Wang
,
Z.
, and
Gursul
,
I.
,
2017
, “
Afterbody Drag Reduction Using Active Flow Control
,”
AIAA
Paper No. 2017-0954.
12.
Weiss
,
P. É.
, and
Deck
,
S.
,
2011
, “
Control of the Antisymmetric Mode (m = 1) for High Reynolds Axisymmetric Turbulent Separating/Reattaching Flows
,”
Phys. Fluids
,
23
(
9
), p.
095102
.
13.
Bearman
,
P. W.
,
1967
, “
The Effect of Base Bleed on the Flow Behind a Two-Dimensional Model With a Blunt Trailing Edge
,”
Aeronaut. Q.
,
18
(
03
), pp.
207
224
.
14.
Van Leeuwen
,
P. M.
,
2009
, “
Computational Analysis of Base Drag Reduction Using Active Flow Control
,”
M.Sc. Thesis
, Delft University of Technology, Delft, The Netherlands.
15.
Wong
,
H. Y.
,
1985
, “
Wake Flow Stabilization by the Action of Base Bleed
,”
ASME J. Fluids Eng.
,
107
(
3
), pp.
378
384
.
16.
Mathur
,
N. B.
, and
Viswanath
,
P. R.
,
2004
, “
Drag Reduction From Square Base Afterbodies at High Speeds
,”
J. Aircr.
,
41
(
4
), pp.
811
820
.
17.
Gentile
,
V.
,
Schrijer
,
F. F. J.
,
Van Oudheusden
,
B. W.
, and
Scarano
,
F.
,
2016
, “
Low-Frequency Behavior of the Turbulent Axisymmetric Near-Wake
,”
Phys. Fluids
,
28
(
6
), p.
065102
.
18.
Weiss
,
P. É.
,
Deck
,
S.
,
Robinet
,
J. C.
, and
Sagaut
,
P.
,
2009
, “
On the Dynamics of Axisymmetric Turbulent Separating/Reattaching Flows
,”
Phys. Fluids
,
21
(
7
), p.
075103
.
19.
Deck
,
S.
, and
Thorigny
,
P.
,
2007
, “
Unsteadiness of an Axisymmetric Separating-Reattaching Flow: Numerical Investigation
,”
Phys. Fluids
,
19
(
6
), p.
065103
.
20.
Schrijer
,
F. F. J.
,
Sciacchitano
,
A.
, and
Scarano
,
F.
,
2014
, “
Spatio-Temporal and Modal Analysis of Unsteady Fluctuations in a High-Subsonic Base Flow
,”
Phys. Fluids
,
26
(
8
), p.
086101
.
21.
Simon
,
F.
,
Deck
,
S.
,
Guillen
,
P.
,
Sagaut
,
P.
, and
Merlen
,
A.
,
2007
, “
Numerical Simulation of the Compressible Mixing Layer past an Axisymmetric Trailing Edge
,”
J. Fluid Mech.
,
591
, pp.
215
253
.
22.
Merz
,
R. A.
,
Page
,
R. H. G.
, and
Przirernbel
,
C. E.
,
1978
, “
Subsonic Axisymmetric Near-Wake Studies
,”
AIAA J.
,
16
(
7
), pp.
656
662
.
23.
Deprés
,
D.
,
Reijasse
,
P.
, and
Dussauge
,
J. P.
,
2004
, “
Analysis of Unsteadiness in Afterbody Transonic Flows
,”
AIAA J.
,
42
(
12
), pp.
2541
255
.
24.
Janssen
,
J. R.
, and
Dutton
,
J. C.
,
2004
, “
Time-Series Analysis of Supersonic Base-Pressure Fluctuations
,”
AIAA J.
,
42
(
3
), pp.
605
613
.
25.
Kastengren
,
A. L.
, and
Dutton
,
J. C.
,
2005
, “
Aspects of Shear Layer Unsteadiness in a Three-Dimensional Supersonic Wake
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1085
1094
.
26.
Eaton
,
J. K.
, and
Johnston
,
J. P.
,
1981
, “
A Review of Research on Subsonic Turbulent Flow Reattachment
,”
AIAA J.
,
19
(
9
), pp.
1093
1100
.
27.
Scarano
,
F.
, and
Van Oudheusden
,
B. W.
,
2003
, “
Planar Velocity Measurements of a Two-Dimensional Compressible Wake
,”
Exp. Fluids
,
34
(
3
), pp.
430
441
.
28.
Humble
,
R. A.
,
Scarano
,
F.
, and
Van Oudheusden
,
B. W.
,
2007
, “
Unsteady Flow Organization of Compressible Planar Base Flows
,”
Phys. Fluids
,
19
(
7
), p.
076101
.
29.
Gentile
,
V.
,
Schrijer
,
F. F. J.
,
Van Oudheusden
,
B. W.
, and
Scarano
,
F.
,
2016
, “
Afterbody Effects on Axisymmetric Base Flows
,”
AIAA J.
, pp.
2285
2294
.
30.
Jovic
,
S.
, and
Driver
,
M. D.
,
1994
, “
Backward-Facing Step Measurements at Low Reynolds Number, Reh = 5000
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA TM-108807
.
31.
Spazzini
,
P. G.
,
Iuso
,
G.
,
Onorato
,
M.
,
Zurlo
,
N.
, and
Di Cicca
,
G. M.
,
2001
, “
Unsteady Behavior of Back-Facing Step Flow
,”
Exp. Fluids
,
30
(
5
), pp.
551
561
.
32.
Le
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1997
, “
Direct Numerical Simulation of Turbulent Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
330
, pp.
349
374
.
33.
Krishnan
,
V.
, and
Mathur
,
N. B.
,
1997
, “
Afterbody Boundary Layer Measurements in the Base Flow Wind Tunnel
,” National Aerospace Lab, Bangalore, India, Report No. PD EA 9705.
34.
Chow
,
W. L.
,
1985
, “
Base Pressure of a Projectile Within the Transonic Flight Regime
,”
AIAA J.
,
23
(
3
), pp.
388
395
.
35.
Fuchs
,
H. V.
,
Mercker
,
E.
, and
Michel
,
U.
,
1979
, “
Large-Scale Coherent Structures in the Wake of Axisymmetric bodies
,”
J. Fluid Mech.
,
93
(
01
), pp.
185
207
.
36.
Tam
,
C. K.
,
Viswanathan
,
K.
,
Ahuja
,
K. K.
, and
Panda
,
J.
,
2008
, “
The Sources of Jet Noise: Experimental EVidence
,”
J. Fluid Mech.
,
615
, pp.
253
292
.
You do not currently have access to this content.