Static mixers (SM) have become standard equipment in the process industries. They are widely used in applications that involve chemical reactions, heat transfer, blending of fluids, or a combination of these. Compared to mechanically agitated vessels, SMs consume less energy, require less maintenance, and can provide mixing with shorter residence time. Assessment of the performance of SM provides a means to categorize and rank the available devices and new designs, which in turn facilitates selection for specific applications. Applying the second law efficiency (SLE) principle, we derived and proposed a novel mixing parameter, the M number, which is a dimensionless ratio of mixing level to energy loss. The parameter is compared to an industry-standard method of mixing evaluation that relies on the coefficient of variation (CoV) change across the mixer. Both CoV and the M number are used to evaluate mixing performance from computational fluid dynamics (CFD) results for a static mixer for various inlet conditions. Unlike the CoV-based parameters considered, the M number offers the advantages of accounting for energy loss and the natural mixing effects of the system. In addition, an empirical relationship is obtained that relates the M number to the Reynolds number (Re). Potential applications for the M number are discussed and its limitations are noted. Work in progress includes investigation with other SM.

References

References
1.
Sutherland
,
W.
,
1784
, “
Improvement in Apparatus for Preparing Gaseous Fuel
,” U.S. Patent No. US206642A.
2.
Thakur
,
R.
,
Vial
,
C.
,
Nigam
,
K.
,
Nauman
,
E.
, and
Djelveh
,
G.
,
2003
, “
Static Mixers in the Process Industries—A Review
,”
Chem. Eng. Res. Des.
,
81
(
7
), pp.
787
826
.
3.
Ghanem
,
A.
,
Lemenand
,
T.
,
Della Valle
,
D.
, and
Peerhossaini
,
H.
,
2014
, “
Static Mixers: Mechanisms, Applications, and Characterization Methods—A Review
,”
Chem. Eng. Res. Des.
,
92
(
2
), pp.
205
228
.
4.
Bohl
,
D.
,
Mehta
,
A.
,
Santitissadeekorn
,
N.
, and
Bollt
,
E.
,
2011
, “
Characterization of Mixing in a Simple Paddle Mixer Using Experimentally Derived Velocity Fields
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061202
.
5.
Tian
,
X.
,
Xiao
,
Y.
,
Zhou
,
P.
,
Zhang
,
W.
,
Chu
,
Z.
, and
Zheng
,
W.
,
2015
, “
Study on the Mixing Performance of Static Mixers in Selective Catalytic Reduction (SCR) Systems
,”
J. Mar. Eng. Technol.
,
14
(
2
), pp.
57
60
.
6.
Konopacki
,
M.
,
Kordas
,
M.
,
Fijałkowski
,
K.
, and
Rakoczy
,
R.
,
2015
, “
Computational Fluid Dynamics and Experimental Studies of a New Mixing Element in a Static Mixer as a Heat Exchanger
,”
Chem. Process Eng.
,
36
(
1
), pp.
59
72
.
7.
Viktorov
,
V.
,
Visconte
,
C.
, and
Mahmud
,
M. R.
,
2016
, “
Analysis of a Novel yy Micromixer for Mixing at a Wide Range of Reynolds Numbers
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091201
.
8.
Kane
,
A. S.
,
Hoffmann
,
A.
,
Baumgärtel
,
P.
,
Seckler
,
R.
,
Reichardt
,
G.
,
Horsley
,
D. A.
,
Schuler
,
B.
, and
Bakajin
,
O.
,
2008
, “
Microfluidic Mixers for the Investigation of Rapid Protein Folding Kinetics Using Synchrotron Radiation Circular Dichroism Spectroscopy
,”
Anal. Chem.
,
80
(
24
), pp.
9534
9541
.
9.
Bertsch
,
A.
,
Heimgartner
,
S.
,
Cousseau
,
P.
, and
Renaud
,
P.
,
2001
, “
Static Micromixers Based on Large-Scale Industrial Mixer Geometry
,”
Lab Chip
,
1
(
1
), pp.
56
60
.
10.
Rahmani
,
R. K.
,
Ayasoufi
,
A.
, and
Keith
,
T. G.
,
2007
, “
A Numerical Study of the Global Performance of Two Static Mixers
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
338
349
.
11.
Rahmani
,
R. K.
,
Keith
,
T. G.
, and
Ayasoufi
,
A.
,
2005
, “
Three-Dimensional Numerical Simulation and Performance Study of an Industrial Helical Static Mixer
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
467
483
.
12.
Aubin
,
J.
,
Fletcher
,
D. F.
,
Bertrand
,
J.
, and
Xuereb
,
C.
,
2003
, “
Characterization of the Mixing Quality in Micromixers
,”
Chem. Eng. Technol.
,
26
(
12
), pp.
1262
1270
.
13.
Kumar
,
V.
,
Shirke
,
V.
, and
Nigam
,
K.
,
2008
, “
Performance of Kenics Static Mixer Over a Wide Range of Reynolds Number
,”
Chem. Eng. J.
,
139
(
2
), pp.
284
295
.
14.
Byrde
,
O.
, and
Sawley
,
M. L.
,
1999
, “
Optimization of a Kenics Static Mixer for Non-Creeping Flow Conditions
,”
Chem. Eng. J.
,
72
(
2
), pp.
163
169
.
15.
Rahmani
,
R. K.
,
Keith
,
T. G.
, and
Ayasoufi
,
A.
,
2006
, “
Numerical Simulation and Mixing Study of Pseudoplastic Fluids in an Industrial Helical Static Mixer
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
467
480
.
16.
Rauline
,
D.
,
Tanguy
,
P. A.
,
Le Blévec
,
J.-M.
, and
Bousquet
,
J.
,
1998
, “
Numerical Investigation of the Performance of Several Static Mixers
,”
Can. J. Chem. Eng.
,
76
(
3
), pp.
527
535
.
17.
Branebjerg
,
J.
,
Fabius
,
B.
, and
Gravesen
,
P.
,
1995
, “
Application of Miniature Analyzers: From Microfluidic Components to μTAS
,”
In Micro Total Analysis Systems
,
Springer
, Dordrecht, The Netherlands, pp.
141
151
.
18.
Kockmann
,
N.
,
Kiefer
,
T.
,
Engler
,
M.
, and
Woias
,
P.
,
2006
, “
Silicon Microstructures for High Throughput Mixing Devices
,”
Microfluid. Nanofluid.
,
2
(
4
), pp.
327
335
.
19.
Hessel
,
V.
,
Hardt
,
S.
,
Löwe
,
H.
, and
Schönfeld
,
F.
,
2003
, “
Laminar Mixing in Different Interdigital Micromixers—Part I: Experimental Characterization
,”
AIChE J.
,
49
(
3
), pp.
566
577
.
20.
Schönfeld
,
F.
,
Hessel
,
V.
, and
Hofmann
,
C.
,
2004
, “
An Optimised Split-and-Recombine Micro-Mixer With Uniform ‘Chaotic’mixing
,”
Lab Chip
,
4
(
1
), pp.
65
69
.
21.
Peerhossaini
,
H.
, and
Wesfreid
,
J.
,
1988
, “
On the Inner Structure of Streamwise Görtler Rolls
,”
Int. J. Heat Fluid Flow
,
9
(
1
), pp.
12
18
.
22.
Lemenand
,
T.
,
Della Valle
,
D.
,
Zellouf
,
Y.
, and
Peerhossaini
,
H.
,
2003
, “
Droplets Formation in Turbulent Mixing of Two Immiscible Fluids in a New Type of Static Mixer
,”
Int. J. Multiphase Flow
,
29
(
5
), pp.
813
840
.
23.
Knight
,
J. B.
,
Vishwanath
,
A.
,
Brody
,
J. P.
, and
Austin
,
R. H.
,
1998
, “
Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds
,”
Phys. Rev. Lett.
,
80
(
17
), p.
3863
.
24.
Johnson
,
T. J.
,
Ross
,
D.
, and
Locascio
,
L. E.
,
2002
, “
Rapid Microfluidic Mixing
,”
Anal. Chem.
,
74
(
1
), pp.
45
51
.
25.
Mensinger
,
H.
,
Richter
,
T.
,
Hessel
,
V.
,
Döpper
,
J.
, and
Ehrfeld
,
W.
,
1995
, “
Microreactor With Integrated Static Mixer and Analysis System
,”
Micro Total Analysis Systems
,
Springer
, Dordrecht, The Netherlands, pp.
237
243
.
26.
Paul
,
E. L.
,
Atiemo-Obeng
,
V. A.
, and
Kresta
,
S. M.
,
2004
,
Handbook of Industrial Mixing: Science and Practice
,
Wiley
, Hoboken, NJ.
27.
Men
,
Y.
,
Hessel
,
V.
,
Löb
,
P.
,
Löwe
,
H.
,
Werner
,
B.
, and
Baier
,
T.
,
2007
, “
Determination of the Segregation Index to Sense the Mixing Quality of Pilot-and Production-Scale Microstructured Mixers
,”
Chem. Eng. Res. Des.
,
85
(
5
), pp.
605
611
.
28.
Salmon
,
J.-B.
,
Ajdari
,
A.
,
Tabeling
,
P.
,
Servant
,
L.
,
Talaga
,
D.
, and
Joanicot
,
M.
,
2005
, “
In Situ Raman Imaging of Interdiffusion in a Microchannel
,”
Appl. Phys. Lett.
,
86
(
9
), p.
094106
.
29.
Baldyga
,
J.
, and
Bourne
,
J.
,
1984
, “
A Fluid Mechanical Approach to Turbulent Mixing and Chemical Reaction Part ii Micromixing in the Light of Turbulence Theory
,”
Chem. Eng. Commun.
,
28
(
4–6
), pp.
243
258
.
30.
Baldyga
,
J.
, and
Bourne
,
J.
,
1989
, “
Simplification of Micromixing Calculations—Part I: Derivation and Application of New Model
,”
Chem. Eng. J.
,
42
(
2
), pp.
83
92
.
31.
Bałdyga
,
J.
, and
Bourne
,
J.
,
1999
,
Turbulent Mixing and Chemical Reactions
,
Wiley
, Hoboken, NJ.
32.
Durandal
,
C.
,
Lemenand
,
T.
,
Della Valle
,
D.
, and
Peerhossaini
,
H.
,
2006
, “
A Chemical Probe for Characterising Turbulent Micromixing
,”
ASME
Paper No. FEDSM2006-98146.
33.
Falk
,
L.
, and
Commenge
,
J.-M.
,
2010
, “
Performance Comparison of Micromixers
,”
Chem. Eng. Sci.
,
65
(
1
), pp.
405
411
.
34.
Fournier
,
M.-C.
,
Falk
,
L.
, and
Villermaux
,
J.
,
1996
, “
A New Parallel Competing Reaction System for Assessing Micromixing Efficiency—Experimental Approach
,”
Chem. Eng. Sci.
,
51
(
22
), pp.
5053
5064
.
35.
Lemenand
,
T.
,
Dupont
,
P.
,
Della Valle
,
D.
, and
Peerhossaini
,
H.
,
2005
, “
Turbulent Mixing of Two Immiscible Fluids
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1132
1139
.
36.
Munnannur
,
A.
, and
Liu
,
Z. G.
,
2010
, “
Development and Validation of a Predictive Model for Def Injection and Urea Decomposition in Mobile SCR Denox Systems
,”
SAE
Technical Paper No. 2010-01-0889.
37.
Park
,
T.
,
Sung
,
Y.
,
Kim
,
T.
,
Lee
,
I.
,
Choi
,
G.
, and
Kim
,
D.
,
2014
, “
Effect of Static Mixer Geometry on Flow Mixing and Pressure Drop in Marine SCR Applications
,”
Int. J. Nav. Archit. Ocean Eng.
,
6
(
1
), pp.
27
38
.
38.
Thomas
,
M.
,
Eldredge
,
T.
,
Medina
,
H.
, and
Fazzina
,
D.
,
2018
, “
A Novel Parameter for the Evaluation of Static Mixers
,”
ASME
Paper No. POWER2018-7510.
39.
Fox
,
R. O.
, and
Varma
,
A.
,
2003
,
Computational Models for Turbulent Reacting Flows
,
Cambridge University Press
, Cambridge, UK.
40.
Corrsin
,
S.
,
1964
, “
The Isotropic Turbulent Mixer: Part ii. arbitrary Schmidt Number
,”
AIChE J.
,
10
(
6
), pp.
870
877
.
41.
Dimotakis
,
P. E.
,
2005
, “
Turbulent Mixing
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
329
356
.
42.
Sreenivasan
,
K. R.
,
2018
, “
Turbulent Mixing: A Perspective
,”
Proc. Natl. Acad. Sci. U. S. A.
(epub).
43.
Holvey
,
C. P.
,
Roberge
,
D. M.
,
Gottsponer
,
M.
,
Kockmann
,
N.
, and
Macchi
,
A.
,
2011
, “
Pressure Drop and Mixing in Single Phase Microreactors: Simplified Designs of Micromixers
,”
Chem. Eng. Process.
,
50
(
10
), pp.
1069
1075
.
44.
Coroneo
,
M.
,
Montante
,
G.
,
Paglianti
,
A.
, and
Magelli
,
F.
,
2011
, “
CFD Prediction of Fluid Flow and Mixing in Stirred Tanks: Numerical Issues About the Rans Simulations
,”
Comput. Chem. Eng.
,
35
(
10
), pp.
1959
1968
.
45.
Yimer
,
I.
,
Campbell
,
I.
, and
Jiang
,
L.-Y.
,
2002
, “
Estimation of the Turbulent Schmidt Number From Experimental Profiles of Axial Velocity and Concentration for High-Reynolds-Number Jet Flows
,”
Can. Aeronaut. Space J.
,
48
(
3
), pp.
195
200
.
46.
Becker
,
H.
,
Hottel
,
H.
, and
Williams
,
G.
,
1967
, “
The Nozzle-Fluid Concentration Field of the Round, Turbulent, Free Jet
,”
J. Fluid Mech.
,
30
(
2
), pp.
285
303
.
47.
Coroneo
,
M.
,
Montante
,
G.
, and
Paglianti
,
A.
,
2012
, “
Computational Fluid Dynamics Modeling of Corrugated Static Mixers for Turbulent Applications
,”
Ind. Eng. Chem. Res.
,
51
(
49
), pp.
15986
15996
.
48.
Bakker
,
A.
,
2000
, “Modeling of the Turbulent Flow in HEV Static Mixers,” The Online CFM Book, accessed June 26, 2019, www.bakker.org/cfmbook.htm
49.
Stec
,
M.
, and
Synowiec
,
P. M.
,
2015
, “
Numerical Method Effect on Pressure Drop Estimation in the Koflo® Static Mixer
,”
Inż. Apar. Chem.
,
54
, pp.
48
50
.http://inzynieria-aparatura-chemiczna.pl/pdf/2015/2015-2/InzApChem_2015_2_048-050.pdf
50.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
, Boca Raton, FL.
51.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
You do not currently have access to this content.