Tip leakage vortex (TLV) has a large impact on compressor performance and should be accurately predicted by computational fluid dynamics (CFD) methods. New approaches of turbulence modeling, such as delayed detached eddy simulation (DDES), have been proposed, the computational resources of which can be reduced much more than for large eddy simulation (LES). In this paper, the numerical simulations of the rotor in a low-speed large-scale axial compressor based on DDES and unsteady Reynolds-averaged Navier–Stokes (URANS) are performed, thus improving our understanding of the TLV dynamic mechanisms and discrepancy of these two methods. We compared the influence of different time steps in the URANS simulation. The widely used large time-step makes the unsteadiness extremely weak. The small time-step shows a better result close to DDES. The time-step scale is related to the URANS unsteadiness and should be carefully selected. In the time-averaged flow, the TLV in DDES dissipates faster, which has a more similar structure to the experiment. Then, the time-averaged and instantaneous results are compared to divide the TLV into three parts. URANS cannot give the loss of stability and evolution details of TLV. The fluctuation velocity spectra show that the amplitude of high frequencies becomes obvious downstream from the TLV, where it becomes unstable. Last, the anisotropy of the Reynolds stress of these two methods is analyzed through the Lumley triangle to see the distinction between the methods and obtain the Reynolds stress. The results indicate that the TLV latter part in DDES is anisotropic, while in URANS it is isotropic.

References

References
1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Wisler
,
D. C.
,
1985
, “
Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
354
363
.
3.
Taylor
,
J. V.
, and
Miller
,
R. J.
,
2016
, “
Competing Three-Dimensional Mechanisms in Compressor Flows
,”
ASME J. Turbomach.
,
139
(
2
), p.
021009
.
4.
Liu
,
Y.
,
Yan
,
H.
,
Lu
,
L.
, and
Li
,
Q.
,
2017
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
.
5.
Wu
,
Y.
,
Wu
,
J.
,
Zhang
,
G.
, and
Chu
,
W.
,
2014
, “
Experimental and Numerical Investigation of Flow Characteristics Near Casing in an Axial Flow Compressor Rotor at Stable and Stall Inception Conditions
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111106
.
6.
Li
,
J.
,
Du
,
J.
,
Li
,
Z.
, and
Lin
,
F.
,
2018
, “
Stability Enhancement With Self-Recirculating Injection in Axial Flow Compressor
,”
ASME J. Turbomach.
,
140
(
7
), p.
071001
.
7.
Liu
,
Y.
,
Tang
,
Y.
,
Liu
,
B.
, and
Lu
,
L.
,
2019
, “
An Exponential Decay Model for the Deterministic Correlations in Axial Compressors
,”
ASME. J. Turbomach.
,
141
(
2
), p.
021005
.
8.
Day
,
I. J.
,
2015
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
9.
Lee
,
K. B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2017
, “
Numerical Study on Aeroelastic Instability for a Low-Speed Fan
,”
ASME J. Turbomach.
,
139
(
7
), p.
071004
.
10.
Wisler
,
D. C.
,
1985
,
Advanced Compressor and Fan Systems
,
GE Aircraft Engine Business Group Publication
,
Cincinnati, OH
.
11.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
12.
Chen
,
J. P.
,
Hathaway
,
M. D.
, and
Herrick
,
G. P.
,
2008
, “
Prestall Behavior of a Transonic Axial Compressor Stage Via Time-Accurate Numerical Simulation
,”
ASME J. Turbomach.
,
130
(
4
), p.
041014
.
13.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
14.
Storer
,
J. A.
, and
Cumpsty
,
N. A.
,
1991
, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
252
259
.
15.
Lakshminarayana
,
B.
,
Zaccaria
,
M.
, and
Marathe
,
B.
,
1995
, “
The Structure of Tip Clearance Flow in Axial Flow Compressors
,”
ASME J. Turbomach.
,
117
(
3
), pp.
336
347
.
16.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
.
17.
Xie
,
Z.
,
Liu
,
Y.
,
Liu
,
X.
,
Sun
,
D.
,
Lu
,
L.
, and
Sun
,
X.
,
2018
, “
Computational Model for Stall Inception and Nonlinear Evolution in Axial Flow Compressors
,”
J. Propul. Power
,
34
(
3
), pp.
720
729
.
18.
Miorini
,
R. L.
,
Wu
,
H.
, and
Katz
,
J.
,
2012
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), p.
031018
.
19.
Vo
,
H. D.
,
2010
, “
Role of Tip Clearance Flow in Rotating Instabilities and Nonsynchronous Vibrations
,”
J. Propul. Power
,
26
(
3
), pp.
556
561
.
20.
Liu
,
Y.
,
Yu
,
X.
, and
Liu
,
B.
,
2008
, “
Turbulence Models Assessment for Large-Scale Tip Vortices in an Axial Compressor Rotor
,”
J. Propul. Power
,
24
(
1
), pp.
15
25
.
21.
Liu
,
Y.
,
Yan
,
H.
,
Liu
,
Y.
,
Lu
,
L.
, and
Li
,
Q.
,
2016
, “
Numerical Study of Corner Separation in a Linear Compressor Cascade Using Various Turbulence Models
,”
Chin. J. Aeronaut.
,
29
(
3
), pp.
639
652
.
22.
Xie
,
Z.
,
Liu
,
Y.
,
Liu
,
X.
,
Lu
,
L.
, and
Sun
,
X.
,
2019
, “
Effect of RANS Method on the Stall Onset Prediction by an Eigenvalue Approach
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031401
.
23.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart-Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
24.
Lee
,
K. B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan—Part I: Modification of Spalart-Allmaras Turbulence Model
,”
ASME J. Turbomach.
,
140
(
5
), p.
051008
.
25.
Kim
,
S.
,
Pullan
,
G.
,
Hall
,
C. A.
,
Grewe
,
R. P.
,
Wilson
,
M. J.
, and
Gunn
,
E.
,
2019
, “
Stall Inception in Low Pressure Ratio Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071005
.
26.
Tang
,
Y.
,
Liu
,
Y.
, and
Lu
,
L.
,
2018
, “
Solidity Effect on Corner Separation and Its Control in a High-Speed Low Aspect Ratio Compressor Cascade
,”
Int. J. Mech. Sci.
,
142
, pp.
304
321
.
27.
Fang
,
L.
,
Sun
,
X.
, and
Liu
,
Y.
,
2016
, “
A Criterion of Orthogonality on the Assumption and Restrictions in Subgrid-Scale Modelling of Turbulence
,”
Phys. Lett. A
,
380
(
47
), pp.
3988
3992
.
28.
Fang
,
L.
, and
Ge
,
M. W.
,
2017
, “
Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems
,”
Chin. Phys. Lett.
,
34
(
3
), p.
030501
.
29.
Fang
,
L.
,
Bos
,
W. J.
,
Shao
,
L.
, and
Bertoglio
,
J. P.
,
2012
, “
Time Reversibility of Navier–Stokes Turbulence and Its Implication for Subgrid Scale Models
,”
J. Turbul.
,
13
(
3
), pp.
1
14
.
30.
Fang
,
L.
,
Shao
,
L.
,
Bertoglio
,
J. P.
,
Cui
,
G. X.
,
Xu
,
C. X.
, and
Zhang
,
Z. S.
,
2009
, “
An Improved Velocity Increment Model Based on Kolmogorov Equation of Filtered Velocity
,”
Phys. Fluids
,
21
(
6
), p.
065108
.
31.
Xu
,
J. L.
,
Song
,
Y. F.
,
Zhang
,
Y.
,
Ji
,
S. C.
, and
Bai
,
J. Q.
,
2016
, “
A Turbulence Characteristic Length Scale for Compressible Flows
,”
J. Turbul.
,
17
(
9
), pp.
900
911
.
32.
Fang
,
L.
,
Zhu
,
Y.
,
Liu
,
Y.
, and
Lu
,
L.
,
2015
, “
Spectral Non-Equilibrium Property in Homogeneous Isotropic Turbulence and Its Implication in Subgrid-Scale Modeling
,”
Phys. Lett. A
,
379
(
38
), pp.
2331
2336
.
33.
Gao
,
Y.
,
Liu
,
Y.
,
Zhong
,
L.
,
Hou
,
J.
, and
Lu
,
L.
,
2016
, “
Study of the Standard k-ε Model for Tip Leakage Flow in an Axial Compressor Rotor
,”
Int. J. Turbo. Jet-Engines
,
33
(
4
), pp.
353
360
.
34.
Liu
,
Y.
,
Yan
,
H.
,
Fang
,
L.
,
Lu
,
L.
,
Li
,
Q.
, and
Shao
,
L.
,
2016
, “
Modified k-ω Model Using Kinematic Vorticity for Corner Separation in Compressor Cascade
,”
China-Technol. Sci.
,
59
(
5
), pp.
795
806
.
35.
Xu
,
J.
,
Zhang
,
Y.
, and
Bai
,
J.
,
2015
, “
One-Equation Turbulence Model Based on Extended Bradshaw Assumption
,”
AIAA J.
,
53
(
6
), pp.
1433
1441
.
36.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2016
, “
Numerical Investigation of Three-Dimensional Separation in an Axial Flow Compressor: The Influence of Freestream Turbulence Intensity and Endwall Boundary Layer State
,”
ASME J. Turbomach.
,
139
(
2
), p.
021011
.
37.
Memory
,
C. L.
,
Chen
,
J. P.
, and
Bons
,
J. P.
,
2016
, “
Implicit Large Eddy Simulation of a Stalled Low-Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
138
(
7
), p.
071008
.
38.
Xu
,
J.
,
Li
,
M.
,
Zhang
,
Y.
, and
Chen
,
L.
,
2016
, “
Wall-Modeled Large Eddy Simulation of Turbulent Channel Flow at High Reynolds Number Using the Von Karman Length Scale
,”
Theor. Comput. Fluid Dyn.
,
30
(
6
), pp.
565
577
.
39.
Hu
,
S.
,
Zhou
,
C.
,
Xia
,
Z.
, and
Chen
,
S.
,
2017
, “
Large Eddy Simulation and CDNS Investigation of T106C Low-Pressure Turbine
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011108
.
40.
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2018
, “
DDES Analysis of the Wake Vortex Related Unsteadiness and Losses in the Environment of a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
4
), p.
041001
.
41.
Wang
,
Z. N.
, and
Yuan
,
X.
,
2013
, “
Unsteady Mechanism of Compressor Corner Separation Over a Range of Incidence Based on Hybrid LES/RANS
,”
ASME
Paper No. GT2013-95300.
42.
Boudet
,
J.
,
Cahuzac
,
A.
,
Kausche
,
P.
, and
Jacob
,
M. C.
,
2015
, “
Zonal Large-Eddy Simulation of a Fan Tip-Clearance Flow, With Evidence of Vortex Wandering
,”
ASME J. Turbomach.
,
137
(
6
), p.
061001
.
43.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2010
, “
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
,”
AIAA J.
,
48
(
8
), pp.
1772
1784
.
44.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Advances in DNS/LES
, Vol.
1
,
Greyden Press
,
Columbus, OH
, pp.
4
8
.
45.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
46.
Du
,
H.
,
Yu
,
X.
,
Zhang
,
Z.
, and
Liu
,
B.
,
2013
, “
Relationship Between the Flow Blockage of Tip Leakage Vortex and Its Evolutionary Procedures Inside the Rotor Passage of a Subsonic Axial Compressor
,”
J. Therm. Sci.
,
22
(
6
), pp.
522
531
.
47.
Wernet
,
M. P.
,
2000
, “
Development of Digital Particle Imaging Velocimetry for Use in Turbomachinery
,”
Exp. Fluids
,
28
(
2
), pp.
97
115
.
48.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
49.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence Heat Mass Transfer 4
,
K.
Hanjalic
,
Y.
Nagano
, and
M.
Tummers
, eds.,
Begell House
,
Redding, CT
, pp.
625
632
.
50.
Yan
,
H.
,
Liu
,
Y.
,
Li
,
Q.
, and
Lu
,
L.
,
2018
, “
Turbulence Characteristics in Corner Separation in a Highly Loaded Linear Compressor Cascade
,”
Aerosp. Sci. Technol
,
75
, pp.
139
154
.
51.
ANSYS,
2009
, ANSYS FLUENT 12.0: User's Guide, Ansys Inc., Canonsburg, PA.
52.
Tyacke
,
J. C.
, and
Tucker
,
P. G.
,
2015
, “
Future Use of Large Eddy Simulation in Aero‐Engines
,”
ASME J. Turbomach.
,
137
(
8
), p.
081005
.
53.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2015
, “
Evaluation of RANS and ZDES Methods for the Prediction of Three-Dimensional Separation in Axial Flow Compressors
,”
ASME
Paper No. GT2015-43975.
54.
Lumley
,
J. L.
,
1979
, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
176
.
55.
Spencer
,
A. J. M.
,
1971
, “
Theory of Invariants
,”
Continuum Phys.
,
1
, pp.
239
352
.
56.
Hamilton
,
N.
, and
Cal
,
R. B.
,
2015
, “
Anisotropy of the Reynolds Stress Tensor in the Wakes of Wind Turbine Arrays in Cartesian Arrangements With Counter-Rotating Rotors
,”
Phys. Fluids
,
27
(
1
), p.
015102
.
You do not currently have access to this content.