This paper demonstrates the usefulness of treating subsonic Fanno flow (adiabatic flow, with friction, of a perfect gas in a constant-area pipe) as a polytropic process. It is shown that the polytropic model allows an explicit equation for mass flow rate to be developed. The concept of the energy transfer ratio is used to develop a close approximation to the polytropic index. Explicit equations for mass flow rate and net expansion factor in terms of upstream properties and pressure ratio are developed for Fanno and isothermal flows. An approximation for choked flow is also presented. The deviation of the results of this polytropic approximation from the values obtained from a traditional gas dynamics analysis of subsonic Fanno flow is quantified and discussed, and a typical design engineering problem is analyzed using the new method.

References

References
1.
Shapiro
,
A.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
, Vol.
1
,
Wiley
,
New York
.
2.
Anderson
,
J.
,
2003
,
Modern Compressible Flow With Historical Perspective
,
3rd ed.
,
McGraw-Hill
,
Boston, MA
.
3.
Rennels
,
D. C.
, and
Hudson
,
H. M.
,
2012
,
Pipe Flow: A Practical and Comprehensive Guide
,
Wiley
,
New York
.
4.
Urata
,
E.
,
2013
, “
A Flow Rate Equation for Subsonic Fanno Flow
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
12
), pp.
2724
2729
.
5.
Farina
,
I.
,
1997
, “
Critical Length Helps Calculate Compressible Flow
,”
Chem. Eng.
,
104
(
2
), pp.
88
92
.
6.
Kumar
,
S.
,
2002
, “
Spreadsheet Calculates Critical Flow
,”
Chem. Eng.
,
109
(
11
), pp.
62
67
.
7.
Crane Company,
2013
, “
Flow of Fluids Through Valves, Fittings, and Pipe
,” Crane, Stamford, CT, Technical Paper No. 410.
8.
Christians
,
J.
,
2012
, “
Approach for Teaching Polytropic Processes Based on the Energy Transfer Ratio
,”
Int. J. Mech. Eng. Educ.
,
40
(
1
), pp.
53
65
.
9.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2002
,
Fundamentals of Fluid Mechanics
,
4th ed.
,
Wiley
,
New York
.
10.
Hullender
,
D.
,
Woods
,
R.
, and
Huang
,
Y.-W.
,
2010
, “
Single Phase Compressible Steady Flow in Pipes
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
014502
.
11.
Coker
,
A. K.
,
2007
,
Ludwig's Applied Process Design for Chemical and Petrochemical Plants
,
4th ed.
, Vol.
1
,
Gulf Professional Publishing
,
Burlington, MA
.
12.
Holland
,
F.
, and
Bragg
,
R.
,
1995
,
Fluid Flow for Chemical Engineers
,
2nd ed.
,
Butterworth Heinemann
,
Oxford, UK
.
13.
Darby
,
R.
, and
Chhabra
,
R. P.
,
2017
,
Chemical Engineering Fluid Mechanics
,
3rd ed.
,
CRC Press
,
Boca Raton, FL
.
14.
Kim
,
J. S.
, and
Singh
,
N. R.
,
2012
, “
A Novel Adiabatic Pipe Flow Equation for Ideal Gases
,”
ASME J. Fluids Eng.
,
134
(
1
), p.
011202
.
15.
Weisbach
,
J. L.
,
1850
,
Lehrbuch der Ingenieur-und Maschinen-Mechanik
,
Friedrich Vieweg und Sohn
,
Braunschweig, Germany
.
16.
Bowman
,
J. L.
,
1987
, “
Compressors
,”
Marks' Standard Handbook for Mechanical Engineers
,
9th ed.
,
E. A.
Avallone
and
T.
Baumeister
III
, eds.,
McGraw-Hill
,
New York
, Chap. 14.3.
17.
Selby
,
S. M.
, ed.,
1971
,
Standard Mathematical Tables
,
19th ed.
,
Chemical Rubber Company
,
Cleveland, OH
.
18.
Keith
,
J. M.
, and
Crowl
,
D. A.
,
2005
, “
Estimating Sonic Gas Flow Rates in Pipelines
,”
J. Loss Prev. Process Ind.
,
18
(
2
), pp.
55
62
.
You do not currently have access to this content.