The effects of a laser beam propagating through atmospheric turbulence are investigated using the phase screen approach. Turbulence effects are modeled by the Kolmogorov description of the energy cascade theory, and outer scale effect is implemented by the von Kármán refractive power spectral density. In this study, we analyze a plane wave propagating through varying atmospheric horizontal paths. An important consideration for the laser beam propagation of long distances is the random variations in the refractive index due to atmospheric turbulence. To characterize the random behavior, statistical analysis of the phase data and related metrics are examined at the output signal. We train three different machine learning algorithms in tensorflow library with the data at varying propagation lengths, outer scale lengths, and levels of turbulence intensity to predict statistical parameters that describe the atmospheric turbulence effects on laser propagation. tensorflow is an interface for demonstrating machine learning algorithms and an implementation for executing such algorithms on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets to large-scale distributed systems and thousands of computational devices such as GPU cards. The library contains a wide variety of algorithms including training and inference algorithms for deep neural network models. Therefore, it has been used for deploying machine learning systems in many fields including speech recognition, computer vision, natural language processing, and text mining.

References

References
1.
Mcdonough
,
J. M.
,
2004
,
Lectures in Elementary Fluid Dynamics: Physics, Mathematics and Applications
,
University of Kentucky
,
Lexington, KY
.
2.
Xiong
,
X.
,
Aziz Rahman
,
M.
, and
Zhang
,
Y.
,
2016
, “
RANS Based Computational Fluid Dynamics Simulation of Fully Developed Turbulent Newtonian Flow in Concentric Annuli
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091202
.
3.
Zhang
,
J. F.
,
Wang
,
S.
,
Zeng
,
M.
, and
Qu
,
Z.
,
2018
, “
Experimental and Numerical Investigation on Flow Characteristics of Large Cross-Sectional Ionic Wind Pump With Multiple Needles-to-Mesh Electrode
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031105
.
4.
Schmidt
,
J. D.
,
2010
,
Numerical Simulation of Optical Wave Propagation
,
SPIE Press
,
Washington, DC
.
5.
Johnston
,
N.
,
Pan
,
M.
,
Kudzma
,
S.
, and
Wang
,
P.
,
2014
, “
Use of Pipeline Wave Propagation Model for Measuring Unsteady Flow Rate
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
031203
.
6.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Goodfellow
,
I. J.
,
Harp
,
A.
,
Irving
,
G.
,
Isard
,
M.
,
Jia
,
Y.
,
Józefowicz
,
R.
,
Kaiser
,
L.
,
Kudlur
,
M.
,
Levenberg
,
J.
,
Mané
,
D.
,
Monga
,
R.
,
Moore
,
S.
,
Murray
,
D. G.
,
Olah
,
C.
,
Schuster
,
M.
,
Shlens
,
J.
,
Steiner
,
B.
,
Sutskever
,
I.
,
Talwar
,
K.
,
Tucker
,
P. A.
,
Vanhoucke
,
V.
,
Vasudevan
,
V.
,
Viégas
,
F. B.
,
Vinyals
,
O.
,
Warden
,
P.
,
Wattenberg
,
M.
,
Wicke
,
M.
,
Yu
,
Y.
, and
Zheng
,
X.
,
2016
, “
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
,” preprint
arXiv:1603.04467
https://arxiv.org/abs/1603.04467
7.
Vorontsov
,
M.
,
Carhart
,
G.
,
Rao Gudimetla
,
V.
,
Weyrauch
,
T.
,
Stevenson
,
E.
,
Lachinova
,
S.
,
Beresnev
,
L.
,
Jiang Liu
,
J.
,
Rehder
,
K.
, and
Riker
,
J.
,
2010
,
Characterization of Atmospheric Turbulence Effects Over 149 Km Propagation Path Using Multi-Wavelength Laser Beacons
,
Maui Economic Development Board
,
Maui, HI
.
8.
Kumar
,
V.
,
Lozano
,
D.
, and
Gudimetla
,
V. R.
,
2018
, “
Characterization of Laser Propagation Over a Long Path Through Atmospheric Turbulence
,”
Laser Technology for Defense and Security XIV
,
M.
Dubinskiy
and
T. C.
Newell
, eds.,
SPIE
,
Orlando, FL
, p.
42
.
9.
Wheelon
,
A.
,
2001
,
Electromagnetic Scintillation I. Geometrical Optics
,
Cambridge University Press
,
New York
.
10.
Michalski
,
R. S.
,
Bratko
,
I.
, and
Bratko
,
A.
, eds.,
1998
,
Machine Learning and Data Mining; Methods and Applications
,
Wiley & Sons
,
New York
.
11.
Cui
,
H.
,
Zhang
,
H.
,
Ganger
,
G. R.
,
Gibbons
,
P. B.
, and
Xing
,
E. P.
,
2016
, “
GeePS: Scalable Deep Learning on Distributed GPUs With a GPU-Specialized Parameter Server
,”
Eleventh European Conference on Computer Systems
, London, Apr. 18–21, p.
4
.
12.
Chen
,
T.
,
Li
,
M.
,
Li
,
Y.
,
Lin
,
M.
,
Wang
,
N.
,
Wang
,
M.
,
Xiao
,
T.
,
Xu
,
B.
,
Zhang
,
C.
, and
Zhang
,
Z.
, 2015, “
MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems
,” preprint
arXiv: 1512.01274
.https://www.cs.cmu.edu/~muli/file/mxnet-learning-sys.pdf
13.
Isard
,
M.
,
Budiu
,
M.
,
Yu
,
Y.
,
Birrell
,
A.
, and
Fetterly
,
D.
,
2007
, “
Dryad: Distributed Data-Parallel Programs From Sequential Building Blocks
,”
ACM SIGOPS Oper. Syst. Rev.
,
41
(
3
), pp.
59
72
.
14.
Dean
,
J.
, and
Ghemawat
,
S.
, 2008, “
MapReduce: Simplified Data Processing on Large Clusters
,”
Commun. ACM.
, 51(1), pp. 107–113.
15.
Dean
,
J.
,
Corrado
,
G. S.
,
Monga
,
R.
,
Chen
,
K.
,
Devin
,
M.
,
Le
,
Q. V.
,
Mao
,
M. Z.
,
Ranzato
,
M. A.
,
Senior
,
A.
,
Tucker
,
P.
,
Yang
,
K.
, and
Ng
,
A. Y.
, 2012, “
Large Scale Distributed Deep Networks
,” Advances in Neural Information Processing Systems, Neural Information Processing Systems Foundation, Inc., San Diego, CA, pp.
1
11
.
16.
Nasrabadi
,
N.
,
2007
, “
Pattern Recognition and Machine Learning
,”
J. Electron Imaging.
,
16
(
4
), p.
049901
.
17.
Strohbehn
,
J. W.
,
1968
, “
Line-of-Sight Wave Propagation Through the Turbulent Atmosphere
,”
Proc. IEEE
,
56
(
8
), pp.
1301
1318
.
18.
Kolmogorov
,
A.
,
1961
,
In Turbulence, Classic Papers on Statistical Theory
,
Interscience
,
New York
.
19.
Chernov
,
L. A.
,
1960
,
Wave Propagation in a Random Medium. Translated From the Russian by R. A. Silverman
,
McGraw-Hill
,
New York
.
20.
Tatarskii
,
V. I.
,
1971
, “
The Effects of the Turbulent Atmosphere on Wave Propagation
,”
Jerusalem Isr. Prog. Sci. Transl.
, pp.
457
471
.https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/TT6850464.xhtml
21.
Weiss
,
G.
,
1961
, “
Wave Propagation in a Turbulent Medium. V. I. Tatarski. Translated by R. A. Silverman. McGraw-Hill, New York, 1961. 285 pp. Illus. $9.75
,”
Science
,
134
(
3475
), pp.
324
325
.
22.
Smith
,
C.
, and
Spottiswoode
,
B.
,
2010
, “
GoldsteinUnwrap2D_r1
,” MATLAB, MathWorks, Natick, MA.
23.
Ghiglia
,
D.
, and
Pritt
,
M.
,
1998
,
Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software
,
Wiley
,
New York
.
24.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
25.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” preprint
arXiv1412.6980 [cs]
.https://arxiv.org/abs/1412.6980
26.
Dayton
,
D.
,
Pierson
,
B.
,
Spielbusch
,
B.
, and
Gonglewski
,
J.
,
1992
, “
Atmospheric Structure Function Measurements With a Shack-Hartmann Wave-Front Sensor
,”
Opt. Lett.
,
17
(
24
), p.
1737
.
27.
Kerr
,
R.
,
1972
, “
Experiments on Turbulence Characteristics and Multiwavelength Scintillation Phenomena
,”
J. Opt. Soc. Am.
,
62
(
9
), pp.
1040
1049
.
28.
Lawrence
,
R. S.
,
Ochs
,
G. R.
, and
Clifford
,
S. F.
,
1970
, “
Measurements of Atmospheric Turbulence Relevant to Optical Propagation
,”
J. Opt. Soc. Am.
,
60
(
6
), pp.
826
830
.
29.
Velar
,
E.
,
Haddon
,
J.
, and
Haddon
,
J.
,
1984
, “
Measurement and Modeling of Scintillation Intensity to Estimate Turbulence Parameters in an Earth-Space Path
,”
IEEE Trans. Antennas Propag.
,
32
(
4
), pp.
340
346
.
30.
Castilla
,
R.
,
Gamez-Montero
,
P. J.
,
Raush
,
G.
, and
Codina
,
E.
,
2017
, “
Method for Fluid Flow Simulation of a Gerotor Pump Using OpenFOAM
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111101
.
You do not currently have access to this content.