In this study, detailed three-dimensional (3D) numerical simulations of intermittent multiphase flows were carried out to investigate the slug initiation process and various features of intermittent flows inside a horizontal pipe. Air and water are used as working fluids. The domain used for simulations is a 14.4 m long pipe with 54 mm inner diameter. The volume of fluid (VOF) model was used to capture the air/water interface and its temporal evolution. Using the developed computational fluid dynamics (CFD) model, the slug formation and propagation along horizontal circular pipe were successfully predicted and studied comprehensively. Slug length and the frequency of slug formation, as two main features of intermittent flow, were used to validate the model against experimental results and available correlations in the literature. Three-dimensional numerical simulation of intermittent flow proved to be a powerful tool in tackling limitations of experiments and providing detailed data about various features of the intermittent flow. The effect of gas and liquid superficial velocities on the liquid slug and elongated bubble length was explored. Moreover, the study revealed new findings related to the elongated bubble shape and velocity field in the slug unit.

References

References
1.
Kong
,
R.
,
Rau
,
A.
,
Kim
,
S.
,
Bajorek
,
S.
,
Tien
,
K.
, and
Hoxie
,
C.
,
2018
, “
Experimental Study of Horizontal Air-Water Plug-to-Slug Transition Flow in Different Pipe Sizes
,”
Int. J. Heat Mass Transfer
,
123
, pp.
1005
1020
.
2.
Dinaryanto
,
O.
,
Prayitno
,
Y. A. K.
,
Majid
,
A. I.
,
Hudaya
,
A. Z.
,
Nusirwan
,
Y. A.
, and
Widyaparaga
,
A.
,
2017
, “
Experimental Investigation on the Initiation and Flow Development of Gas-Liquid Slug Two-Phase Flow in a Horizontal Pipe
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
93
108
.
3.
Taitel
,
Y.
, and
Dukler
,
A.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas‐Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
4.
Lin
,
P.
, and
Hanratty
,
T.
,
1986
, “
Prediction of the Initiation of Slugs With Linear Stability Theory
,”
Int. J. Multiphase Flow
,
12
(
1
), pp.
79
98
.
5.
Kadri
,
U.
,
Zoeteweij
,
M.
,
Mudde
,
R.
, and
Oliemans
,
R.
,
2009
, “
A Growth Model for Dynamic Slugs in Gas–Liquid Horizontal Pipes
,”
Int. J. Multiphase Flow
,
35
(
5
), pp.
439
449
.
6.
Nydal
,
O.
,
Pintus
,
S.
, and
Andreussi
,
P.
,
1992
, “
Statistical Characterization of Slug Flow in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
18
(
3
), pp.
439
453
.
7.
Rogero
,
C.
,
2009
, “
Experimental Investigation of Developing Plug and Slug Flows
,” Ph.D.
dissertation
, Technische Universität München, Munich, Germany.https://www.td.mw.tum.de/fileadmin/w00bso/www/Forschung/Dissertationen/carpintero09.pdf
8.
Abdulkadir
,
M.
,
Hernandez-Perez
,
V.
,
Lowndes
,
I.
,
Azzopardi
,
B.
, and
Sam-Mbomah
,
E.
,
2016
, “
Experimental Study of the Hydrodynamic Behaviour of Slug Flow in a Horizontal Pipe
,”
Chem. Eng. Sci.
,
156
, pp.
147
161
.
9.
Gregory
,
G.
, and
Scott
,
D.
,
1969
, “
Correlation of Liquid Slug Velocity and Frequency in Horizontal Cocurrent Gas‐Liquid Slug Flow
,”
AIChE J.
,
15
(
6
), pp.
933
935
.
10.
Woods
,
B. D.
, and
Hanratty
,
T. J.
,
1999
, “
Influence of Froude Number on Physical Processes Determining Frequency of Slugging in Horizontal Gas–Liquid Flows
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1195
1223
.
11.
Zabaras
,
G.
, 1999, “
Prediction of Slug Frequency for Gas-Liquid Flows
,” SPE Annual Technical Conference and Exhibition, Houston, TX, Oct. 3–6, SPE Paper No.
SPE-56462MS
.
12.
Heywood
,
N.
, and
Richardson
,
J.
,
1979
, “
Slug Flow of Air—Water Mixtures in a Horizontal Pipe: Determination of Liquid Holdup by γ-Ray Absorption
,”
Chem. Eng. Sci.
,
34
(
1
), pp.
17
30
.
13.
Talimi
,
V.
,
Muzychka
,
Y.
, and
Kocabiyik
,
S.
,
2012
, “
Numerical Simulation of the Pressure Drop and Heat Transfer of Two Phase Slug Flows in Microtubes Using Moving Frame of Reference Technique
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6463
6472
.
14.
Falcão
,
A. P.
,
Mazzolari
,
A.
,
Gonçalves
,
A. B.
,
Araújo
,
M. A. V.
, and
Trigo-Teixeira
,
A.
,
2013
, “
Influence of Elevation Modelling on Hydrodynamic Simulations of a Tidally-Dominated Estuary
,”
J. Hydrol.
,
497
, pp.
152
164
.
15.
Medina
,
C. D. P.
,
Bassani
,
C. L.
,
Cozin
,
C.
,
Barbuto
,
F. A. D. A.
,
Junqueira
,
S. L. M.
, and
Morales
,
R. E. M.
,
2015
, “
Numerical Simulation of the Heat Transfer in Fully Developed Horizontal Two-Phase Slug Flows Using a Slug Tracking Method
,”
Int. J. Therm. Sci.
,
88
, pp.
258
266
.
16.
Conte
,
M. G.
,
Hegde
,
G. A.
,
da Silva
,
M. J.
,
Sum
,
A. K.
, and
Morales
,
R. E.
,
2017
, “
Characterization of Slug Initiation for Horizontal Air-Water Two-Phase Flow
,”
Exp. Therm. Fluid Sci.
,
87
, pp.
80
92
.
17.
Issa
,
R.
, and
Kempf
,
M.
,
2003
, “
Simulation of Slug Flow in Horizontal and Nearly Horizontal Pipes With the Two-Fluid Model
,”
Int. J. Multiphase Flow
,
29
(
1
), pp.
69
95
.
18.
Bonizzi
,
M.
, and
Issa
,
R.
,
2003
, “
A Model for Simulating Gas Bubble Entrainment in Two-Phase Horizontal Slug Flow
,”
Int. J. Multiphase Flow
,
29
(
11
), pp.
1685
1717
.
19.
Issa
,
R.
,
Bonizzi
,
M.
, and
Barbeau
,
S.
,
2006
, “
Improved Closure Models for Gas Entrainment and Interfacial Shear for Slug Flow Modelling in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
10
(
32
), pp.
1287
1293
.
20.
Khan
,
W.
,
Chandra
,
A.
,
Kishor
,
K.
,
Sachan
,
S.
, and
Alam
,
M. S.
,
2018
, “
Slug Formation Mechanism for Air–Water System in T-Junction Microchannel: A Numerical Investigation
,”
Chem. Papers
,
72
(
11
), pp.
2921
2932
.
21.
Ban
,
S.
,
Pao
,
W.
, and
Nasif
,
M. S.
,
2018
, “
Numerical Simulation of Two-Phase Flow Regime in Horizontal Pipeline and Its Validation
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
6
), pp.
1279
1314
.
22.
Al-Hashimy
,
Z. I.
,
Al-Kayiem
,
H. H.
,
Nasif
,
M. S.
, and
Mohmmed
,
A.
, “
Numerical Simulation of the Transient Development of Slug Flow in Horizontal Pipes
,”
Appl. Mech. Mater.
,
819
, pp.
300
304
.
23.
Mehdizadeh
,
A.
,
Sherif
,
S.
, and
Lear
,
W.
,
2011
, “
Numerical Simulation of Thermofluid Characteristics of Two-Phase Slug Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3457
3465
.
24.
Gupta
,
R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2010
, “
CFD Modelling of Flow and Heat Transfer in the Taylor Flow Regime
,”
Chem. Eng. Sci.
,
65
(
6
), pp.
2094
2107
.
25.
Frank
,
T.
, 2005, “
Numerical Simulation of Slug Flow Regime for an Air-Water Two-Phase Flow in Horizontal Pipes
,”
11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics
(
NURETH-11
), Avignon, France, Oct. 2–4, pp.
2
6
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.386&rep=rep1&type=pdf
26.
Yeoh
,
G. H.
, and
Tu
,
J.
,
2019
,
Computational Techniques for Multiphase Flows
,
Butterworth-Heinemann
, Oxford, UK.
27.
Ubbink
,
O.
, and
Issa
,
R.
,
1999
, “
A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes
,”
J. Comput. Phys.
,
153
(
1
), pp.
26
50
.
28.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
29.
ANSYS FLUENT,
2015
, “Fluent Theory Guide and User's Guide,”
Ansys Inc.
, Canonsburg, PA.
30.
Yin
,
P.
,
Cao
,
X.
,
Li
,
Y.
,
Yang
,
W.
, and
Bian
,
J.
,
2018
, “
Experimental and Numerical Investigation on Slug Initiation and Initial Development Behavior in Hilly-Terrain Pipeline at a Low Superficial Liquid Velocity
,”
Int. J. Multiphase Flow
,
101
, pp.
85
96
.
31.
Pao
,
W.
,
Sam
,
B.
,
Nasif
,
M.
, and
Norpiah
,
R.
,
2018
, “
Numerical Validation of Gas-Liquid Slug Flow Inside Horizontal Pipe
,”
J. Fundam. Appl. Sci.
,
9
(
5S
), pp.
662
672
.
32.
Taha
,
T.
, and
Cui
,
Z.
,
2006
, “
CFD Modelling of Slug Flow in Vertical Tubes
,”
Chem. Eng. Sci.
,
61
(
2
), pp.
676
687
.
33.
Nash
,
J. E.
, and
Sutcliffe
,
J. V.
,
1970
, “
River Flow Forecasting Through Conceptual Models—Part I: A Discussion of Principles
,”
J. Hydrol.
,
10
(
3
), pp.
282
290
.
34.
Martins
,
N. M.
,
Carrico
,
N. J.
,
Ramos
,
H. M.
, and
Covas
,
D. I.
,
2014
, “
Velocity-Distribution in Pressurized Pipe Flow Using CFD: Accuracy and Mesh Analysis
,”
Comput. Fluids
,
105
, pp.
218
230
.
35.
Dukler
,
A. E.
, and
Hubbard
,
M. G.
,
1975
, “
A Model for Gas-Liquid Slug Flow in Horizontal and Near Horizontal Tubes
,”
Ind. Eng. Chem. Fundam.
,
14
(
4
), pp.
337
347
.
36.
Nicholson
,
M.
,
Aziz
,
K.
, and
Gregory
,
G.
,
1978
, “
Intermittent Two Phase Flow in Horizontal Pipes: Predictive Models
,”
Can. J. Chem. Eng.
,
56
(
6
), pp.
653
663
.
37.
Gregory
,
G.
,
Nicholson
,
M.
, and
Aziz
,
K.
,
1978
, “
Correlation of the Liquid Volume Fraction in the Slug for Horizontal Gas-Liquid Slug Flow
,”
Int. J. Multiphase Flow
,
4
(
1
), pp.
33
39
.
38.
Greskovich
,
E. J.
, and
Shrier
,
A. L.
,
1972
, “
Slug Frequency in Horizontal Gas-Liquid Slug Flow
,”
Ind. Eng. Chem. Process Des. Dev.
,
11
(
2
), pp.
317
318
.
39.
Hernandez-Perez
,
V.
,
Abdulkadir
,
M.
, and
Azzopardi
,
B.
,
2010
, “
Slugging Frequency Correlation for Inclined Gas–Liquid Flow
,”
World Acad. Sci., Eng. Technol.
,
6
, pp.
44
51
.
You do not currently have access to this content.