Solid particle erosion is a serious issue in centrifugal pumps that may result in economic losses. Erosion prediction in centrifugal pump is complex because the flow field inside it is three-dimensional (3D) unsteady and erosion can be affected by numerous factors. In this study, solid particle erosion of the entire centrifugal pump for liquid–solid flow is investigated numerically. Two-way coupled Eulerian–Lagrangian approach is adopted to calculate the liquid–solid interaction. The reflection model proposed by Grant and Tabakoff and the erosion model proposed by the Erosion/Corrosion Research Center are combined to calculate the erosion rate and predict the erosion pattern. Results show that for the baseline case, the inlet pipe is the least eroded component, whereas the impeller is the most eroded component. The highest average and maximum erosion rates occur at the hub of impeller. The most severe erosion region of a blade is the leading edge with a curvature angle that varies from 55 deg to 60 deg. The most severe erosion region of a volute is in the vicinity of a curvature angle of 270 deg. The impeller erosion pattern, especially the middle part of the hub and the vicinity of the blade pressure side, can be greatly influenced by operation parameters, such as flow rate, particle concentration, and particle size.

References

References
1.
Mei
,
C. R.
, and
Dregne
,
H. E.
,
2001
, “
Review Article: Silt and the Future Development of China's Yellow River
,”
Geogr. J.
,
167
(
1
), pp.
7
22
.
2.
Gandhi
,
B. K.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2001
, “
Performance Characteristics of Centrifugal Slurry Pumps
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
271
280
.
3.
Engin
,
T.
, and
Gur
,
M.
,
2003
, “
Comparative Evaluation of Some Existing Correlations to Predict Head Degradation of Centrifugal Slurry Pumps
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
149
157
.
4.
Engin
,
T.
, and
Kurt
,
A.
,
2003
, “
Prediction of Centrifugal Slurry Pump Head Reduction: An Artificial Neural Networks Approach
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
199
202
.
5.
Roco
,
M. C.
,
Nair
,
P.
, and
Addie
,
G. R.
,
1986
, “
Casing Headloss in Centrifugal Slurry Pumps
,”
ASME J. Fluids Eng.
,
108
(
4
), pp.
453
464
.
6.
Wilson
,
K. C.
,
Addie
,
G. R.
,
Sellgren
,
A.
, and
Clift
,
R.
,
2006
, “
Pump Selection and Cost Considerations
,” Slurry Transport Using Centrifugal Pumps, Springer, Boston, MA, pp.
338
352
.
7.
Gahlot
,
V. K.
,
Seshadri
,
V.
, and
Malhotra
,
R. C.
,
1992
, “
Effect of Density, Size Distribution, and Concentration of Solid on the Characteristics of Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
114
(
3
), pp.
386
389
.
8.
Ben-Ami
,
Y.
,
Uzi
,
A.
, and
Levy
,
A.
,
2016
, “
Modelling the Particles Impingement Angle to Produce Maximum Erosion
,”
Powder Technol.
,
301
, pp.
1032
1043
.
9.
Lin
,
N.
,
Arabnejad
,
H.
,
Shirazi
,
S. A.
,
McLaury
,
B. S.
, and
Lan
,
H. Q.
,
2018
, “
Experimental Study of Particle Size, Shape and Particle Flow Rate on Erosion of Stainless Steel
,”
Powder Technol.
,
336
, pp.
70
79
.
10.
Walker
,
C. I.
,
Wells
,
P. J.
, and
Bodkin
,
G. C.
,
1994
, “
The Effect of Flow Rate and Solid Particle Size on the Wear of Centrifugal Slurry Pumps
,” American Society of Mechanical Engineers, New York, pp.
189
195
.
11.
Ashrafizadeh
,
H.
,
McDonald
,
A.
, and
Mertiny
,
P.
,
2017
, “
Development of a Finite Element Model to Study the Effect of Temperature on Erosion Resistance of Polyurethane Elastomers
,”
Wear
,
390–391
, pp.
322
333
.
12.
Liu
,
J. G.
,
BaKeDaShi
,
W. L.
,
Li
,
Z. L.
,
Xu
,
Y. Z.
,
Ji
,
W. R.
,
Zhang
,
C.
,
Cui
,
G.
, and
Zhang
,
R. Y.
,
2017
, “
Effect of Flow Velocity on Erosion Corrosion of 90-Degree Horizontal Elbow
,”
Wear
,
376–377
, pp.
516
525
.
13.
Divakar
,
M.
,
Agarwal
,
V. K.
, and
Singh
,
S. N.
,
2005
, “
Effect of the Material Surface Hardness on the Erosion of AISI316
,”
Wear
,
259
(
1–6
), pp.
110
117
.
14.
Pereira
,
G. C.
,
de Souza
,
F. J.
, and
Martins
,
D. A. D.
,
2014
, “
Numerical Prediction of the Erosion Due to Particles in Elbows
,”
Powder Technol.
,
261
, pp.
105
117
.
15.
Zheng
,
C.
,
Liu
,
Y. H.
,
Qin
,
J.
,
Ji
,
W. X.
,
Zhang
,
S. H.
,
Ji
,
R. J.
, and
Cai
,
B. P.
,
2017
, “
Experimental Study on the Erosion Behavior of WC-Based High-Velocity Oxygen-Fuel Spray Coating
,”
Powder Technol.
,
318
, pp.
383
389
.
16.
Rayan
,
M. A.
, and
Shawky
,
M.
,
1989
, “
Evaluation of Wear in a Centrifugal Slurry Pump
,”
Proc. Inst. Mech. Eng., Part A
,
203
(
1
), pp.
19
23
.
17.
Gandhi
,
B. K.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2001
, “
Variation of Wear Along the Volute Casing of a Centrifugal Slurry Pump
,”
JSME Int. J., Ser. B
,
44
(
2
), pp.
231
237
.
18.
Tian
,
H. H.
,
Addie
,
G. R.
, and
Pagalthivarthi
,
K. V.
,
2005
, “
Determination of Wear Coefficients for Erosive Wear Prediction Through Coriolis Wear Testing
,”
Wear
,
259
(
1–6
), pp.
160
170
.
19.
Wiedenroth
,
W.
,
1984
, “
Wear Tests Executed With a 125 mm I.D. Loop and a Model Dredge Pump
,”
Ninth International Conference on Hydraulic Transport of Solids in Pipes
,
Rome, Italy
,
Oct. 17–19
, pp.
317
330
.
20.
Padhy
,
M. K.
, and
Saini
,
R. P.
,
2009
, “
Effect of Size and Concentration of Silt Particles on Erosion of Pelton Turbine Buckets
,”
Energy
,
34
(
10
), pp.
1477
1483
.
21.
Prasanna
,
N. D.
,
Siddaraju
,
C.
,
Shetty
,
G.
,
Ramesh
,
M. R.
, and
Reddy
,
M.
,
2018
, “
Studies on the Role of HVOF Coatings to Combat Erosion in Turbine Alloys
,”
Mater. Today: Proc.
,
5
(
1
), pp.
3130
3136
.
22.
Pagalthivarthi
,
K. V.
,
Furlan
,
J. M.
, and
Visintainer
,
R. J.
,
2013
, “
Effect of Particle Size Distribution on Erosion Wear in Centrifugal Pump Casings
,”
ASME
Paper No. FEDSM2013-16218.
23.
Zhong
,
Y.
, and
Minemura
,
K.
,
1996
, “
Measurement of Erosion Due to Particle Impingement and Numerical Prediction of Wear in Pump Casing
,”
Wear
,
199
(
1
), pp.
36
44
.
24.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena—Part I
,”
Wear
,
6
(
1
), pp.
5
21
.
25.
Hong
,
G.
,
Zhang
,
Q.
, and
Yu
,
G.
,
2016
, “
Trajectories of Coarse Granular Sediment Particles in a Simplified Centrifugal Dredge Pump Model
,”
Adv. Mech. Eng.
,
8
(
11
), pp.
1
11
.
26.
Pagalthivarthi
,
K. V.
,
Furlan
,
J. M.
, and
Visintainer
,
R. J.
,
2017
, “
Effective Particle Size Representation for Erosion Wear in Centrifugal Pump Casings
,”
ASME
Paper No. FEDSM2017-69240.
27.
Addie
,
G. R. V.
, and
Robert
,
J.
,
1987
, “
Experiences With a Numerical Method of Calculating Slurry Pump Casing Wear
,”
Fourth International Pump Symposia
, Houston, TX, May 5–7, pp. 27–34.https://oaktrust.library.tamu.edu/handle/1969.1/164318
28.
Roco
,
M. C.
,
Addie
,
G. R.
, and
Visintainer
,
R.
,
1985
, “
Study on Casing Performances in Centrifugal Slurry Pumps
,”
Part. Sci. Technol.
,
3
(
1–2
), pp.
65
88
.
29.
Pagalthivarthi
,
K. V.
,
Gupta
,
P. K.
,
Tyagi
,
V.
, and
Ravi
,
M. R.
,
2011
, “
CFD Prediction of Erosion Wear in Centrifugal Slurry Pumps for Dilute Slurry Flows
,”
J. Comput. Multiphase Flows
,
3
(
4
), pp.
225
245
.
30.
Nursen
,
E. C.
, and
Ayder
,
E.
,
2003
, “
Numerical Calculation of the Three-Dimensional Swirling Flow Inside the Centrifugal Pump Volutes
,”
Int. J. Rotating Mach.
,
9
(
4
), pp.
247
253
.
31.
Asuaje
,
M.
,
Bakir
,
F.
,
Kergourlay
,
G.
,
Noguera
,
R.
, and
Rey
,
R.
,
2006
, “
Three-Dimensional Quasi-Unsteady Flow Simulation in a Centrifugal Pump: Comparison With Experimental Results
,”
Proc. Inst. Mech. Eng., Part A
,
220
(
3
), pp.
239
256
.
32.
Pagalthivarthi
,
K. V.
,
Furlan
,
J. M.
, and
Visintainer
,
R. J.
,
2013
, “
Comparison of 2D and 3D Predictions of Erosion Wear in Centrifugal Slurry Pump Casings
,”
ASME
Paper No. FEDSM2013-16215.
33.
Barrio
,
R.
,
Parrondo
,
J.
, and
Blanco
,
E.
,
2010
, “
Numerical Analysis of the Unsteady Flow in the Near-Tongue Region in a Volute-Type Centrifugal Pump for Different Operating Points
,”
Comput. Fluids
,
39
(
5
), pp.
859
870
.
34.
Majidi
,
K.
,
2004
, “
Numerical Study of Unsteady Flow in a Centrifugal Pump
,”
ASME
Paper No. GT2004-54099.
35.
Cheah
,
K. W.
,
Lee
,
T. S.
,
Winoto
,
S. H.
, and
Zhao
,
Z. M.
,
2009
, “
Numerical Analysis of Impeller-Volute Tongue Interaction and Unsteady Fluid Flow in a Centrifugal Pump
,” Fluid Machinery and Fluid Mechanics, Springer, Berlin, pp.
66
71
.
36.
Noon
,
A. A.
, and
Kim
,
M. H.
,
2016
, “
Erosion Wear on Centrifugal Pump Casing Due to Slurry Flow
,”
Wear
,
364–365
, pp.
103
111
.
37.
Pagalthivarthi
,
K. V.
, and
Visintainer
,
R. J.
,
2009
, “
Solid-Liquid Flow-Induced Erosion Prediction in Three-Dimensional Pump Casing
,”
ASME
Paper No. FEDSM2009-78274.
38.
Krüger
,
S.
,
Martin
,
N.
, and
Dupont
,
P.
,
2010
, “
Assessment of Wear Erosion in Pump Impellers
,”
26th International Pump Users Symposium
, Houston, TX, Mar. 16--18, pp. 51–56.https://oaktrust.library.tamu.edu/handle/1969.1/162620
39.
Levy
,
A. V.
, and
Buqian
,
W.
,
1988
, “
Erosion of Hard Material Coating Systems
,”
Wear
,
121
(
3
), pp.
325
346
.
40.
Alabeedi
,
K. F.
,
Abboud
,
J. H.
, and
Benyounis
,
K. Y.
,
2009
, “
Microstructure and Erosion Resistance Enhancement of Nodular Cast Iron by Laser Melting
,”
Wear
,
266
(
9
), pp.
925
933
.
41.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.
42.
Zhang
,
Y.
,
Reuterfors
,
E. P.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2007
, “
Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows
,”
Wear
,
263
(
1–6
), pp.
330
338
.
43.
Tuzson
,
J. J.
,
1984
, “
Laboratory Slurry Erosion Tests and Pump Wear Rate Calculations
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
135
140
.
44.
Kumar
,
S.
,
Mohapatra
,
S. K.
, and
Gandhi
,
B. K.
,
2013
, “
Investigation on Centrifugal Slurry Pump Performance With Variation of Operating Speed
,”
Int. J. Mech. Mater. Eng.
,
8
(
1
), pp.
40
47
.http://ejum.fsktm.um.edu.my/article/1383.pdf
45.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
Waltham, MA
.
46.
Mohaghegh
,
F.
, and
Udaykumar
,
H. S.
,
2016
, “
Comparison of Sharp and Smoothed Interface Methods for Simulation of Particulate Flows—Part I: Fluid Structure Interaction for Moderate Reynolds Numbers
,”
Comput. Fluids
,
140
, pp.
39
58
.
47.
Mohaghegh
,
F.
, and
Udaykumar
,
H. S.
,
2017
, “
Comparison of Sharp and Smoothed Interface Methods for Simulation of Particulate Flows—Part II: Inertial and Added Mass Effects
,”
Comput. Fluids
,
143
, pp.
103
119
.
48.
Lomholt
,
S.
, and
Maxey
,
M. R.
,
2003
, “
Force-Coupling Method for Particulate Two-Phase Flow: Stokes Flow
,”
J. Comput. Phys.
,
184
(
2
), pp.
381
405
.
49.
Marshall
,
J. S.
,
2009
, “
Discrete-Element Modeling of Particulate Aerosol Flows
,”
J. Comput. Phys.
,
228
(
5
), pp.
1541
1561
.
50.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
51.
ANSYS, Inc.
,
2014
,
ANSYS Fluent 16.0 Theory Guide
,
ANSYS
,
Canonsburg, PA
.
52.
Sommerfeld
,
M.
, and
Huber
,
N.
,
1999
, “
Experimental Analysis and Modelling of Particle-Wall Collisions
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1457
1489
.
53.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
A Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(
2
), pp.
184
193
.
54.
Neilson
,
J. H.
, and
Gilchrist
,
A.
,
1968
, “
Erosion by a Stream of Solid Particles
,”
Wear
,
11
(
2
), pp.
111
122
.
55.
Oka
,
Y. I.
,
Okamura
,
K.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact—Part 1: Effects of Impact Parameters on a Predictive Equation
,”
Wear
,
259
(
1–6
), pp.
95
101
.
56.
Huang
,
C. K.
,
Chiovelli
,
S.
,
Minev
,
P.
,
Luo
,
J. L.
, and
Nandakumar
,
K.
,
2008
, “
A Comprehensive Phenomenological Model for Erosion of Materials in Jet Flow
,”
Powder Technol.
,
187
(
3
), pp.
273
279
.
57.
Peng
,
W. S.
, and
Cao
,
X. W.
,
2016
, “
Numerical Simulation of Solid Particle Erosion in Pipe Bends for Liquid-Solid Flow
,”
Powder Technol.
,
294
, pp.
266
279
.
58.
Zeng
,
L.
,
Zhang
,
G. A.
, and
Guo
,
X. P.
,
2014
, “
Erosion-Corrosion at Different Locations of X65 Carbon Steel Elbow
,”
Corros. Sci.
,
85
, pp.
318
330
.
59.
Li
,
Y. L.
,
Yuan
,
S. Q.
,
Wang
,
X. K.
,
Tan
,
S. K.
, and
Mao
,
J. Y.
,
2016
, “
Comparison of Flow Fields in a Centrifugal Pump Among Different Tracer Particles by Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061105
.
60.
Ahmad
,
K.
,
Baker
,
R. C.
, and
Goulas
,
A.
,
1986
, “
Computation and Experimental Results of Wear in a Slurry Pump Impeller
,”
Proc. Inst. Mech. Eng., Part C
,
200
(
6
), pp.
439
445
.
61.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Metwally
,
M.
,
1991
, “
Effect of Particle Size Distribution on Particle Dynamics and Blade Erosion in Axial Flow Turbines
,”
ASME J. Eng. Gas Turbines Power
,
113
(
4
), pp.
607
615
.
You do not currently have access to this content.