Numerical calculations were carried out to investigate control of transition on a flat plate by means of local dynamic surface deformation. The configuration and flow conditions are similar to a previous computation which simulated transition mitigation. Physically, the surface modification may be produced by piezoelectrically driven actuators located below a compliant aerodynamic surface, which have been employed experimentally. One actuator is located in the upstream plate region and oscillated at the most unstable frequency of 250 Hz to develop disturbances representing Tollmien–Schlichting instabilities. A controlling actuator is placed downstream and oscillated at the same frequency, but with an appropriate phase shift and modified amplitude to decrease disturbance growth and delay transition. While the downstream controlling actuator is two-dimensional (spanwise invariant), several forms of upstream disturbances were considered. These included disturbances which were strictly two-dimensional, those which were modulated in amplitude and those which had a spanwise variation of the temporal phase shift. Direct numerical simulations were obtained by solution of the three-dimensional compressible Navier–Stokes equations, utilizing a high-fidelity computational scheme and an implicit time-marching approach. A previously devised empirical process was applied for determining the optimal parameters of the controlling actuator. Results of the simulations are described, features of the flowfields elucidated, and comparisons made between solutions of the uncontrolled and controlled cases for the respective incoming disturbances. It is found that the disturbance growth is mitigated and the transition is delayed for all forms of the upstream perturbations, substantially reducing the skin friction.

References

References
1.
Schlichting
,
H.
, and
Gersten
,
K.
,
2001
,
Boundary-Layer Theory
,
8th ed.
,
Springer-Verlag
,
New York
.
2.
Gaster
,
M.
,
1962
, “
A Note on the Relation Between Temporally-Increasing and Spatially-Increasing Disturbances in Hydrodynamic Stability
,”
J. Fluid Mech.
,
14
(
2
), pp.
222
224
.
3.
Michalke
,
A.
,
1964
, “
On the Inviscid Instability of the Hyperbolictangent Velocity Profile
,”
J. Fluid Mech.
,
19
(
4
), pp.
543
556
.
4.
Gaster
,
M.
,
1965
, “
On the Generation of Spatially Growing Waves in a Boundary Layer
,”
J. Fluid Mech.
,
22
(
3
), pp.
433
441
.
5.
Wehrmann
,
O. H.
,
1965
, “
Tollmien-Schlichtling Waves Under the Influence of a Flexible Wall
,”
Phys. Fluids
,
8
(
7
), p.
1389
.
6.
Jordinson
,
R.
,
1970
, “
The Flat Plate Boundary Layer—Part 1: Numerical Integration of the Orr-Sommerfeld Equation
,”
J. Fluid Mech.
,
43
(
4
), pp.
801
811
.
7.
Liepmann
,
H. W.
,
Brown
,
G. L.
, and
Nosenchuck
,
D. M.
,
1982
, “
Control of Laminar-Instability Waves Using a New Technique
,”
J. Fluid Mech.
,
118
(
1
), pp.
187
200
.
8.
Liepmann
,
H. W.
, and
Nosenchuck
,
D. M.
,
1982
, “
Active Control of Laminar-Turbulent Transition
,”
J. Fluid Mech.
,
118
(
1
), pp.
201
204
.
9.
Thomas
,
S. W.
,
1983
, “
The Control of Boundary-Layer Transition Using a Wave-Superposition Principle
,”
J. Fluid Mech.
,
137
(
1
), pp.
233
250
.
10.
Kachanov
,
Y. S.
,
1994
, “
Physical Mechanisms of Laminar-Boundary-Layer Transition
,”
Annu. Rev. Fluid Mech.
,
26
(
1
), pp.
411
482
.
11.
Joslin
,
R. D.
,
Nicolaides
,
R. A.
,
Erlebacher
,
G.
,
Hussaini
,
M. Y.
, and
Gunzburger
,
M. D.
,
1995
, “
Active Control of Boundary-Layer Instabilities: Use of Sensors and Spectral Controller
,”
AIAA J.
,
33
(
8
), pp.
1521
1523
.
12.
Joslin
,
R. D.
,
Erlebacher
,
G.
, and
Hussaini
,
M. Y.
,
1996
, “
Active Control of Instabilities in Laminar Boundary Layers-Overview and Concept Validation
,”
ASME J. Fluids Eng.
,
118
(
3
), pp.
494
497
.
13.
Sturzebecher
,
D.
, and
Nitsche
,
W.
,
2003
, “
Active Cancellation of Tollmien-Schlichtling Instabilities on a Wing Using Multi-Channel Sensor Actuator Systems
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
572
583
.
14.
Grundmann
,
S.
, and
Tropea
,
C.
,
2007
, “
Experimental Transition Delay Using Glow-Discharge Plasma Actuators
,”
Exp. Fluids
,
42
(
4
), pp.
653
657
.
15.
Grundmann
,
S.
, and
Tropea
,
C.
,
2008
, “
Active Cancellation of Artificially Introduced Tollmien-Schlichtling Waves Using Plasma Actuators
,”
Exp. Fluids
,
44
(
5
), pp.
795
806
.
16.
Grundmann
,
S.
, and
Tropea
,
C.
,
2009
, “
Experimental Damping of Boundary-Layer Oscillations Using DBD Plasma Actuators
,”
Int. J. Heat Fluid Flow
,
30
(
3
), pp.
394
402
.
17.
Losse
,
N. R.
,
King
,
R.
,
Zengl
,
M.
,
Rist
,
M.
, and
Noack
,
B. R.
,
2011
, “
Control of Tollmien-Schlichtling Instabilities by Finite Distributed Wall Actuation
,”
Theor. Comput. Fluid Dyn.
,
25
(
1–4
), pp.
167
178
.
18.
Duchmann
,
A.
,
Kurz
,
A.
,
Widmann
,
A.
,
Grundmann
,
S.
, and
Tropea
,
C.
,
2012
, “
Characterization of Tollmien-Schlichting Wave Damping by DBD Plasma Actuators Using Phase-Locked PIV
,”
AIAA
Paper No. 2012-0903.
19.
Kurz
,
A.
,
Tropea
,
C.
,
Grundmann
,
S.
,
Forte
,
M.
,
Vermeersch
,
O.
,
Seraudie
,
A.
,
Arnal
,
D.
,
Goldin
,
N.
, and
King
,
R.
,
2012
, “
Transition Delay Using DBD Plasma Actuators in Direct Frequency Mode
,”
AIAA
Paper No. 2012-2945.
20.
Kurz
,
A.
,
Tropea
,
C.
,
Grundmann
,
S.
,
Goldin
,
N.
, and
King
,
R.
,
2012
, “
Development of Active Wave Cancellation Using DBD Plasma Actuators for in-Flight Transition Control
,”
AIAA
Paper No. 2012-2949.
21.
Widmann
,
A.
,
Duchmann
,
A.
,
Kurz
,
A.
,
Grundmann
,
S.
, and
Tropea
,
C.
,
2012
, “
Measuring Tollmien-Schlichting Waves Using phased-Averaged Particle Image Velocimetry
,”
Exp. Fluids
,
53
(
3
), pp.
707
715
.
22.
Kotsonis
,
M.
,
Giepman
,
R.
,
Hulshoff
,
S.
, and
Veldhuis
,
L.
,
2013
, “
Numerical Study of the Control of Tollmien-Schlichting Waves Using Plasma Actuators
,”
AIAA J.
,
51
(
10
), pp.
2353
2364
.
23.
Barckmann
,
K.
,
Tropea
,
C.
, and
Grundmann
,
S.
,
2015
, “
Attenuation of tollmien-Schlichtling Waves Using Plasma Actuator Vortex Generators
,”
AIAA J.
,
55
(
5
), pp.
1384
1388
.
24.
Amitay
,
M.
,
Tuna
,
B. A.
, and
Dell'Orso
,
H.
,
2016
, “
Identification and Mitigation of T-S Waves Using Localized Dynamic Surface Modification
,”
Phys. Fluids
,
28
(
6
), p.
064103
.
25.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2018
, “
Direct Numerical Simulation of Transition Control Via Local Dynamic Surface Modification
,”
AIAA
Paper No. 2018-3211.
26.
Beam
,
R.
, and
Warming
,
R.
,
1978
, “
An Implicit Factored Scheme for the Compressible Navier-Stokes Equations
,”
AIAA J.
,
16
(
4
), pp.
393
402
.
27.
Gordnier
,
R. E.
, and
Visbal
,
M. R.
,
1993
, “
Numerical Simulation of Delta-Wing Roll
,”
AIAA
Paper No. 93-0554.
28.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes
,”
AIAA
Paper No. 81-1259.
29.
Pulliam
,
T. H.
, and
Chaussee
,
D. S.
,
1981
, “
A Diagonal Form of an Implicit Approximate-Factorization Algorithm
,”
J. Comput. Phys.
,
39
(
2
), pp.
347
363
.
30.
Lele
,
S. A.
,
1992
, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
,
103
(
1
), pp.
16
42
.
31.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
1999
, “
High-Order-Accurate Methods for Complex Unsteady Subsonic Flows
,”
AIAA J.
,
37
(
10
), pp.
1231
1239
.
32.
Gaitonde
,
D.
,
Shang
,
J. S.
, and
Young
,
J. L.
,
1997
, “
Practical Aspects of High-Order Accurate Finite-Volume Schemes for Electromagnetics
,”
AIAA
Paper No. 97-0363.
33.
Gaitonde
,
D.
, and
Visbal
,
M. R.
,
1998
, “
High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation Into FDL3DI
,” Air Force Research Laboratory, Wright-Patterson AFB, OH, Report No. AFRL-VA-WP-TR-1998-3060.
34.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2002
, “
Application of Large-Eddy Simulation to Supersonic Compression Ramps
,”
AIAA J.
,
40
(
8
), pp.
1574
1581
.
35.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2003
, “
Large-Eddy Simulation of Supersonic Cavity Flowfields Including Flow Control
,”
AIAA J.
,
41
(
8
), pp.
1452
1462
.
36.
Sherer
,
S. E.
, and
Scott
,
J. N.
,
2005
, “
High-Order Compact Finite Difference Methods on General Overset Grids
,”
J. Comput. Phys.
,
210
(
2
), pp.
459
496
.
37.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2005
, “
Numerical Simulation of Separation Control for Transitional Highly-Loaded Low-Pressure Turbines
,”
AIAA J.
,
43
(
9
), pp.
1958
1967
.
38.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2007
, “
Direct Numerical Simulation of Flow Past an Array of Distributed Roughness Elements
,”
AIAA J.
,
45
(
8
), pp.
1967
1976
.
39.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2009
, “
Large Eddy Simulation of Plasma-Based Control Strategies for Bluff Body Flow
,”
AIAA J.
,
47
(
3
), pp.
717
729
.
40.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2010
, “
Large-Eddy Simulation of Plasma-Based Turbulent Boundary-Layer Separation Control
,”
AIAA J.
,
48
(
12
), pp.
2793
2810
.
41.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2014
, “
Numerical Simulation of Excrescence Generated Transition
,”
AIAA J.
,
52
(
2
), pp.
385
397
.
42.
Steinbrenner
,
J. P.
,
Chawner
,
J. P.
, and
Fouts
,
C. L.
,
1991
, “
The GRIDGEN 3D Multiple Block Grid Generation System, Volume II: User's Manual
,” Wright Research and Development Center, Wright-Patterson AFB, OH, Report No. WRDC-TR-90-3022.
43.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
2001
, “
Very High-Order Spatially Implicit Schemes for Computational Acoustics on Curvilinear Meshes
,”
J. Comput. Acoust.
,
09
(
4
), pp.
1259
1286
.
44.
Schlichting
,
H.
,
1960
,
Boundary-Layer Theory
,
4th ed.
,
McGraw-Hill
,
New York
.
45.
Saric
,
W. S.
,
1994
, “
Physical Description of Boundary-Layer Transition: Experimental Evidence
,” Progress in Transition Modelling, AGARD, Neuilly sur Seine, France, AGARD Report No. 793.
46.
Piomelli
,
U.
, and
Balaras
,
E.
,
2002
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
349
374
.
You do not currently have access to this content.