This study quantified the performance and fluid disbursal capabilities of several fluidic oscillator variations injecting from the face of a backward-facing step. These devices were designed as a replacement for a pair of nonoscillating fuel injector jets in an ultra-compact combustor. However, these results have relevance whenever fluid is injected from the face of a backward-facing step making the oscillator performance widely applicable. The oscillators were tested with and without coflow and at varying coflow velocities, which controlled the strength of the recirculation behind the backward-facing step. The fluidic oscillators investigated included single as well as paired oscillators that produced in-phase and out-of-phase synchronized jets. The injected fluid disbursal was found to be dependent on the velocity ratio of the freestream air and the injecting jet velocity. Additionally, the oscillation angle was found to be a function of Reynolds number due to the interaction of the oscillating jet with the walls of the models used in the present study. Finally, the oscillation frequency was found to be independent of Reynolds number, throat aspect ratio, working gas, and model scale, which resulted in a Strouhal number of 0.017. This result was supported by nondimensionalizing the published data from several other studies.

References

References
1.
Zelina
,
J.
,
Sturgess
,
G. J.
, and
Shouse
,
D. T.
,
2004
, “
The Behavior of an Ultra-Compact Combustor (UCC) Based on Centrifugally-Enhanced Turbulent Burning Rates
,”
AIAA
Paper No. 2004-3541.
2.
DeMarco
,
K. J.
,
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2018
, “
Performance Characterization of a Circumferential Combustion Cavity
,”
AIAA
Paper No. 2018-4922.
3.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2017
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME J. Turbomach.
,
140
(
3
), p.
031009
.
4.
Sieber
,
M.
,
Ostermann
,
F.
,
Woszidlo
,
R.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Lagrangian Coherent Structures in the Flow Field of a Fluidic Oscillator
,”
Phys. Rev. Fluids
,
1
(
5
), p.
050509
.https://journals.aps.org/prfluids/pdf/10.1103/PhysRevFluids.1.050509
5.
Spyropoulos
,
C. E.
,
1964
, “
A Sonic Oscillator
,”
Fluid Amplification Symposium
,
Washington, DC
,
May 26–28
, pp.
27
51
.
6.
Gregory
,
J. W.
,
Sullivan
,
J. P.
,
Raman
,
G.
, and
Raghu
,
S.
,
2007
, “
Characterization of the Microfluidic Oscillator
,”
AIAA J.
,
45
(
3
), pp.
568
576
.
7.
Stouffer
,
R. D.
, and
Bower
,
R.
,
1998
, “
Fluidic Flow Meter With Fiber Optic Sensor
,” U.S. Patent No.
5,827,976
.https://patents.google.com/patent/US5827976A/en
8.
Stouffer
,
R. D.
,
1979
, “
Oscillating Spray Device
,” U.S. Patent No.
4,151,955
.https://patents.google.com/patent/US4151955A/en
9.
Woszidlo
,
R.
,
Ostermann
,
F.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
The Time-Resolved Natural Flow Field of a Fluidic Oscillator
,”
Exp. Fluids
,
56
(
125
), pp.
1
12
.
10.
Seele
,
R.
,
Tewes
,
P.
,
Woszidlo
,
R.
,
McVeigh
,
M. A.
,
Lucas
,
N.
, and
Wygnanski
,
I.
,
2009
, “
Discrete Sweeping Jets as Tools for Improving the Performance of the V-22
,”
J. Aircr.
,
46
(
6
), pp.
2098
2106
.
11.
Kara
,
K.
,
Kim
,
D.
, and
Morris
,
P. J.
,
2018
, “
Flow-Separation Control Using Sweeping Jet Actuator
,”
AIAA J.
,
56
(
11
), pp.
4604
4613
.
12.
Koklu
,
M.
, and
Owens
,
L.
,
2017
, “
Comparison of Sweeping Jet Actuators With Different Flow-Control Techniques for Flow-Separation Control
,”
AIAA J.
,
55
(
3
), pp.
848
860
.
13.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2017
, “
Effect of Velocity Ratio on the Flow Field of a Spatially Oscillating Jet in Crossflow
,”
AIAA
Paper No. 2017-0769.
14.
Jentzsch
,
M.
,
Taubert
,
L.
, and
Wygnanski
,
I.
,
2017
, “
On the Use of Sweeping Jets to Trim and Control a Tailless Aircraft Model
,”
AIAA
Paper No. 2017-3042.
15.
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2012
, “
Increasing the Passive Scalar Mixing Quality of Jets in Crossflow With Fluidics Actuators
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021503
.
16.
Guyot
,
D.
,
Paschereit
,
C. O.
, and
Raghu
,
S.
,
2009
, “
Active Combustion Control Using a Fluidic Oscillator for Asymmetric Fuel Flow Modulation
,”
Int. J. Flow Control
,
1
(
2
), pp.
155
166
.
17.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2017
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME
Paper No. GT2017-64479.
18.
Raman
,
G.
, and
Rice
,
E. J.
,
1994
, “
Development of Phased Twin Flip-Flop Jets
,”
ASME J. Vib. Acoust.
,
116
(
3
), pp.
263
268
.
19.
Tomac
,
M. N.
, and
Gregory
,
J. W.
,
2019
, “
Phase-Synchronized Fluidic Oscillator Pair
,”
AIAA J.
,
57
(
2
), pp.
670
681
.
20.
Schmidt
,
H. J.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2017
, “
Separation Control With Fluidic Oscillators in Water
,”
Exp. Fluids
,
58
(106), pp.
1
17
.
21.
AL-Asady
,
A.
, and
Razouqi
,
B.
,
2013
, “
Theoretical and Experimental Investigation of Fluidic Oscillator
,”
J. Eng.
,
19
(
3
), pp.
403
413
.https://www.iasj.net/iasj?func=fulltext&aId=68477
22.
Hossain
,
M. A.
,
Prenter
,
R.
,
Agricola
,
L. M.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2017
, “
Effects of Roughness on the Performance of Fluidic Oscillators
,”
AIAA
Paper No. 2017-0770.
23.
Hirsch
,
D.
, and
Gharib
,
M.
,
2018
, “
Schlieren Visualization and Analysis of Sweeping Jet Actuator Dynamics
,”
AIAA J.
,
56
(
8
), pp.
2947
2960
.
24.
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2017
, “
Development and Testing of a Variable Geometry Diffuser in an Ultra-Compact Combustor
,”
AIAA
Paper No. 2017-0777.
25.
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2018
, “
Measurements of Temperature, Pressure, Velocity, and Frequency in an Ultra Compact Combustor
,”
AIAA
Paper No. 2018-1875.
26.
Pope
,
S. B.
,
2000
,
Turbulent Flow
,
Cambridge University Press
,
Cambridge, UK
.
27.
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Sweeping Jet Impingement Heat Transfer on a Turbine Vane Leading Edge
,”
Global Power and Propulsion Society Forum 18, Zürich, Switzerland, Jan. 10–12, Paper No.
GPPS-2018-0148
.https://www.researchgate.net/publication/325072428_Sweeping_Jet_Impingement_Heat_Transfer_on_a_Simulated_Turbine_Vane_Leading_Edge
28.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
,
3rd ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.