The pressure pulsations in the vaneless space of pump-turbines are extremely intense and always experience rapid time variations during transient scenarios, causing structural vibrations and even more serious accidents. In this study, the mechanism behind the rapid time variations of the vaneless space pressure pulsations in a model pump-turbine during runaway was analyzed through three-dimensional (3D) numerical simulations. These results show that the high-frequency pressure pulsation components originating from rotor–stator interactions (RSI) are dominant during the whole process. These components fluctuate significantly in frequency when the working point goes through the S-shaped region of the characteristic curve, with the amplitudes increasing. Meanwhile, some low-frequency pulsations are also enhanced and become obvious. These features can be attributed to the transitions of the inter blade vortex structures (IBVSs) to the forward flow vortex structures (FFVSs) and the back flow vortex structures (BFVSs) at the impeller entrance, when the pump-turbine operates in the region with S-shaped characteristics. The FFVSs mainly cause decreases in frequency and introduce low-frequency pulsations, while the BFVSs are responsible for the unstable fluctuations. These findings contribute to the understanding of how transient flow patterns evolve and may provide new ideas about avoiding severe pressure pulsations caused by rotating stalls in the pump-turbine during transient scenarios.

References

References
1.
Kerschberger
,
P.
, and
Gehrer
,
A.
,
2010
, “
Hydraulic Development of High Specific-Speed Pump-Turbines by Means of an Inverse Design Method, Numerical Flow-Simulation (CFD) and Model Testing
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
, p.
012039
.
2.
Egusquiza
,
E.
,
Valero
,
C.
,
Huang
,
X.
,
Jou
,
E.
,
Guardo
,
A.
, and
Rodriguez
,
C.
,
2012
, “
Failure Investigation of a Large Pump-Turbine Runner
,”
Eng. Fail. Anal.
,
23
, pp.
27
34
.
3.
Zhang
,
Y.
,
Zheng
,
X.
,
Li
,
J.
, and
Du
,
X.
,
2019
, “
Experimental Study on the Vibrational Performance and Its Physical Origins of a Prototype Reversible Pump Turbine in the Pumped Hydro Energy Storage Power Station
,”
Renewable Energy
,
130
, pp.
667
676
.
4.
Xia
,
L.
,
Cheng
,
Y.
,
Yang
,
Z.
,
You
,
J.
,
Yang
,
J.
, and
Qian
,
Z.
,
2017
, “
Evolutions of Pressure Fluctuations and Runner Loads During Runaway Processes of a Pump-Turbine
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091101
.
5.
Le
,
Z.
, and
Kong
,
L.
,
2005
, “
Cause Analysis on Rotating Part Lifting of Unit 2 in Tianhuangping Pumped Storage Plant
,”
Mech. Electr. Tech. Hydropower Stn.
,
28
(
5
), pp.
11
13
(in Chinese).
6.
Wei
,
B.
, and
Ji
,
C.
,
2010
, “
Study on Rotor Operation Stability of High-Speed Large-Capacity Generator-Motor: The Accident of Rotor Pole in Huizhou Pumped-Storage Power Station
,”
Water Power
,
36
(
9
), pp.
57
60
(in Chinese).
7.
Hasmatuchi
,
V.
,
2012
, “
Hydrodynamics of a Pump-Turbine Operating at Off-Design Conditions in Generating Mode
,”
Ph.D. thesis
, École polytechnique fédérale de Lausanne, Lausanne, Switzerland.https://infoscience.epfl.ch/record/180203/files/EPFL_TH5373.pdf
8.
Sun
,
Y.
,
Zuo
,
Z.
,
Liu
,
S.
,
Liu
,
J.
, and
Wu
,
Y.
,
2014
, “
Distribution of Pressure Fluctuations in a Prototype Pump Turbine at Pump Mode
,”
Adv. Mech. Eng.
,
6
, p.
923937
.
9.
Sun
,
Y. K.
,
Zuo
,
Z. G.
,
Liu
,
S. H.
,
Wu
,
Y. L.
,
Liu
,
J. T.
,
Qin
,
D. Q.
, and
Wei
,
X. Z.
,
2013
, “
Numerical Study of Pressure Fluctuations Transfer Law in Different Flow Rate of Turbine Mode in a Prototype Pump Turbine
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
52
(
5
), p.
052024
.
10.
Zuo
,
Z.
,
Liu
,
S.
,
Sun
,
Y.
, and
Wu
,
Y.
,
2015
, “
Pressure Fluctuations in the Vaneless Space of High-Head Pump-Turbines—A Review
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
965
974
.
11.
Zhang
,
Y.
,
Chen
,
T.
,
Li
,
J.
, and
Yu
,
J.
,
2017
, “
Experimental Study of Load Variations on Pressure Fluctuations in a Prototype Reversible Pump Turbine in Generating Mode
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
074501
.
12.
Rodriguez
,
C. G.
,
Mateos-Prieto
,
B.
, and
Egusquiza
,
E.
,
2014
, “
Monitoring of Rotor-Stator Interaction in Pump-Turbine Using Vibrations Measured With On-Board Sensors Rotating With Shaft
,”
Vib. Shock
,
2014
, p.
276796
.
13.
Hasmatuchi
,
V.
,
Farhat
,
M.
,
Roth
,
S.
,
Botero
,
F.
, and
Avellan
,
F.
,
2011
, “
Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051104
.
14.
Zhang
,
Y.
,
Zhang
,
Y.
, and
Wu
,
Y.
,
2017
, “
A Review of Rotating Stall in Reversible Pump Turbine
,”
Proc. Inst. Mech. Eng. C
,
231
(
7
), pp.
1181
1204
.
15.
Xia
,
L. S.
,
Cheng
,
Y. G.
,
Zhang
,
X. X.
, and
Yang
,
J. D.
,
2014
, “
Numerical Analysis of Rotating Stall Instabilities of a Pump-Turbine in Pump Mode
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032020
.
16.
Chaudhry
,
M. H.
,
2014
,
Applied Hydraulic Transients
,
3rd ed.
,
Springer
,
New York
.
17.
Botero
,
F.
,
Hasmatuchi
,
V.
,
Roth
,
S.
, and
Farhat
,
M.
,
2014
, “
Non-Intrusive Detection of Rotating Stall in Pump-Turbines
,”
Mech. Syst. Signal Process.
,
48
(
1–2
), pp.
162
173
.
18.
Li
,
D.
,
Wang
,
H.
,
Li
,
Z.
,
Nielsen
,
T. K.
,
Goyal
,
R.
,
Wei
,
X.
, and
Qin
,
D.
,
2018
, “
Transient Characteristics During the Closure of Guide Vanes in a Pump-Turbine in Pump Mode
,”
Renewable Energy
,
118
, pp.
973
983
.
19.
Li
,
Z.
,
Bi
,
H.
,
Karney
,
B.
,
Wang
,
Z.
, and
Yao
,
Z.
,
2017
, “
Three-Dimensional Transient Simulation of a Prototype Pump-Turbine During Normal Turbine Shut Down
,”
J. Hydraul. Res.
,
55
(
4
), pp.
520
537
.
20.
Zhang
,
X.
,
Cheng
,
Y.
,
Xia
,
L.
,
Yang
,
J.
, and
Qian
,
Z.
,
2016
, “
Looping Dynamic Characteristics of a Pump-Turbine in the S-Shaped Region During Runaway
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091102
.
21.
Xia
,
L.
,
Cheng
,
Y.
, and
Cai
,
F.
,
2017
, “
Pressure Pulsation Characteristics of a Model Pump-Turbine Operating in the S-Shaped Region: CFD Simulations
,”
Int. J. Fluid Mach. Syst.
,
10
(
3
), pp.
287
295
.
22.
Xia
,
L.
,
Cheng
,
Y.
,
Yang
,
J.
, and
Cai
,
F.
,
2019
, “
Evolution of Flow Structures and Pressure Fluctuations in the S-Shaped Region of a Pump-Turbine
,”
J. Hydraul. Res.
,
57
(
1
), pp.
107
121
.
23.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
24.
Zhang
,
X.
, and
Cheng
,
Y.
,
2012
, “
Simulation of Hydraulic Transients in Hydropower Systems Using the 1-D-3-D Coupling Approach
,”
J. Hydrodyn.
,
24
(
4
), pp.
595
604
.
25.
Zhang
,
X.
,
Cheng
,
Y.
,
Yang
,
J.
,
Xia
,
L.
, and
Lai
,
X.
,
2014
, “
Simulation of the Load Rejection Transient Process of a Francis Turbine by Using a 1-D-3-D Coupling Approach
,”
J. Hydrodyn.
,
26
(
5
), pp.
715
724
.
26.
Zeng
,
W.
,
Yang
,
J.
, and
Guo
,
W.
,
2015
, “
Runaway Instability of Pump-Turbines in S-Shaped Regions Considering Water Compressibility
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051401
.
27.
Zeng
,
W.
,
Yang
,
J.
,
Hu
,
J.
, and
Yang
,
J.
,
2016
, “
Guide-Vane Closing Schemes for Pump-Turbines Based on Transient Characteristics in S-Shaped Region
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051302
.
28.
Zeng
,
W.
,
Yang
,
J.
, and
Hu
,
J.
,
2017
, “
Pumped Storage System Model and Experimental Investigations on S-Induced Issues During Transients
,”
Mech. Syst. Signal Process.
,
90
, pp.
350
364
.
29.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
30.
Neto
,
A. D. A.
,
Jester-Zuerker
,
R.
,
Jung
,
A.
, and
Maiwald
,
M.
,
2012
, “
Evaluation of a Francis Turbine Draft Tube Flow at Part Load Using Hybrid RANS-LES Turbulence Modelling
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p.
62010
.
31.
Jošt
,
D.
,
Škerlavaj
,
A.
, and
Lipej
,
A.
,
2014
, “
Improvement of Efficiency Prediction for a Kaplan Turbine With Advanced Turbulence Models
,”
Strojniski Vestn.-J. Mech. Eng.
,
60
(
2
), pp.
124
134
.
32.
Timo
,
K. A. A. R.
,
2014
, “
Investigation of Francis Turbine Part Load Instabilities Using Flow Simulations With a Hybrid RANS-LES Turbulence Model
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032001
.
33.
Yan
,
J.
,
Koutnik
,
J.
,
Seidel
,
U.
, and
Hubner
,
B.
,
2010
, “
Compressible Simulation of Rotor-Stator Interaction in Pump-Turbines
,”
Int. J. Fluid Mach. Syst.
,
3
(
4
), pp.
315
323
.
34.
Yin
,
J. L.
,
Wang
,
D. Z.
,
Wang
,
L. Q.
,
Wu
,
Y. L.
, and
Wei
,
X. Z.
,
2012
, “
Effects of Water Compressibility on the Pressure Fluctuation Prediction in Pump Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p.
62030
.
35.
Roberson
,
J. A.
, and
Crowe
,
C. T.
,
1997
,
Engineering Fluid Mechanics
,
Wiley
,
New York
.
36.
Huang
,
E. N.
, and
Shen
,
S. S.
,
2014
,
Hilbert Huang Transform and Its Application
,
World Scientific Publishing Co. Pte. Ltd
,
Singapore
.
37.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. Lond. A
,
454
(
1971
), pp.
903
995
.
38.
Huang
,
E. N.
,
Chen
,
X.
,
Lo
,
M.
, and
Wu
,
Z.
,
2011
, “
On Hilbert Spectral Representation: A True Time-Frequency Representation for Nonlinear and Nonstationary Data
,”
Adv. Adapt. Data Anal.
,
3
(
1&2
), pp.
63
93
.
39.
Wu
,
Z.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adapt. Data Anal.
,
1
(
1
), pp.
1
41
.
40.
Huang
,
N. E.
,
Wu
,
Z.
,
Long
,
S. R.
,
Arnold
,
K. C.
,
Chen
,
X.
, and
Blank
,
K.
,
2009
, “
On Instantaneous Frequency
,”
Adv. Adapt. Data Anal.
,
1
(
2
), pp.
177
229
.
41.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.
42.
Dong
,
Y.
,
Yan
,
Y.
, and
Liu
,
C.
,
2016
, “
New Visualization Method for Vortex Structure in Turbulence by Lambda2 and Vortex Filaments
,”
Appl. Math. Model.
,
40
(
1
), pp.
500
509
.
43.
Zhang
,
Y.
,
Liu
,
K.
,
Xian
,
H.
, and
Du
,
X.
,
2018
, “
A Review of Methods for Vortex Identification in Hydroturbines
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1269
1285
.
44.
Cavazzini
,
G.
,
Covi
,
A.
,
Pavesi
,
G.
, and
Ardizzon
,
G.
,
2015
, “
Analysis of the Unstable Behavior of a Pump-Turbine in Turbine Mode: Fluid-Dynamical and Spectral Characterization of the S-Shape Characteristic
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021105
.
45.
Widmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbines
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041101
.
46.
Pavesi
,
G.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2017
, “
Numerical Simulation of a Pump-Turbine Transient Load Following Process in Pump Mode
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021114
.
47.
Dörfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2013
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery
,
Springer
,
London
.
You do not currently have access to this content.