Multirotor unmanned aerial vehicles (UAVs) are a promising means of package delivery. Such applications generally involve carrying bulky payloads under the vehicle. Understanding the aerodynamic interaction effects of payloads on the vehicle is the key to design such systems, in the low Reynolds number regime of small UAVs. High-speed particle image velocimetry (PIV), force, and torque measurements have been used with a rotor and a cubic box to investigate the rotor–box interactions and configurations typical of multirotor UAVs. The observed rotor and vehicle performance trends are explained by the mean flow field captured through PIV. Conditions similar to ground-effect operation are developed for the rotor at a high level of rotor-box overlap. A slight improvement in the vehicle performance is observed at conditions where the box is just out of the rotor wake. Some basic instantaneous flow phenomena due to rotor–box interaction have been identified. The interactions have been classified into three distinct modes based on observations at a range of box positions relative to the rotor. An empirical tip vortex trajectory model for isolated rotors is found to be instrumental in predicting the interaction mode at a given box position.

References

References
1.
Strickland
,
E.
, 2018, “
Africa Leads the World on Drone Delivery: Flights to Begin in Tanzania in 2018
,” IEEE Spectrum, Rwanda, accessed Jan. 20, 2019, https://spectrum.ieee.org/the-human-os/robotics/drones/africa-leads-the-world-on-drone-delivery
2.
Gilchrist
,
K.
, 2019, “
Worlds First Drone Delivery Service Launches in Iceland
,” CNBC, accessed Jan. 20, 2019, www.cnbc.com/2017/08/22/worlds-first-drone-delivery-service-launches-in-iceland.html
3.
Amazon, 2019, “
First Prime Air Delivery,” Amazon,
accessed Jan. 20, 2019, https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
4.
Lorber
,
P. F.
, and
Egolf
,
T. A.
,
1990
, “
An Unsteady Helicopter Rotor-Fuselage Aerodynamic Interaction Analysis
,”
J. Am. Helicopter Soc.
,
35
(
3
), pp.
32
42
.
5.
Renaud
,
T.
,
O'Brien
,
D.
,
Smith
,
M.
, and
Potsdam
,
M.
,
2004
, “
Evaluation of Isolated Fuselage and Rotor-Fuselage Interaction Using CFD
,” Office National D'etudes Et De Recherches Aerospatiales, Chatillon, France, Report.
6.
Renaud
,
T.
,
O'Brien
,
D.
,
Smith
,
M.
, and
Potsdam
,
M.
,
2008
, “
Evaluation of Isolated Fuselage and Rotor-Fuselage Interaction Using Computational Fluid Dynamics
,”
J. Am. Helicopter Soc.
,
53
(
1
), pp.
3
17
.
7.
Nam
,
H. J.
,
Park
,
Y. M.
, and
Kwon
,
O. J.
,
2006
, “
Simulation of Unsteady Rotor-Fuselage Aerodynamic Interaction Using Unstructured Adaptive Meshes
,”
J. Am. Helicopter Soc.
,
51
(
2
), pp.
141
149
.
8.
Kenyon
,
A. R.
, and
Brown
,
R. E.
,
2009
, “
Wake Dynamics and Rotor-Fuselage Aerodynamic Interactions
,”
J. Am. Helicopter Soc.
,
54
(
1
), p.
12003
.
9.
Steijl
,
R.
, and
Barakos
,
G.
,
2009
, “
Computational Study of Helicopter Rotor-Fuselage Aerodynamic Interactions
,”
AIAA J.
,
47
(
9
), pp.
2143
2157
.
10.
Lee
,
J.-K.
, and
Kwon
,
O. J.
,
2002
, “
Predicting Aerodynamic Rotor-Fuselage Interactions by Using Unstructured Meshes
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
44
(
146
), pp.
208
216
.
11.
Balch
,
D. T.
,
1985
, “
Experimental Study of Main Rotor/Tail Rotor/Airframe Interaction in Hover
,”
J. Am. Helicopter Soc.
,
30
(
2
), pp.
49
56
.
12.
Leishman
,
J.
, and
Bi
,
N.-P.
,
1990
, “
Aerodynamic Interactions Between a Rotor and a Fuselage in Forward Flight
,”
J. Am. Helicopter Soc.
,
35
(
3
), pp.
22
31
.
13.
Mineck
,
R. E.
, and
Gorton
,
S. A.
,
2000
, “
Steady and Periodic Pressure Measurements on a Generic Helicopter Fuselage Model in the Presence of a Rotor
,” National Aeronautics and Space Administration Hampton Va Langley Research Center, Hampton, VA, Report No. NASA/TM-2000-210286.
14.
Xu
,
H.-Y.
,
Xing
,
S.-L.
,
Ye
,
Z.-Y.
, and
Ma
,
M.-S.
,
2017
, “
A Simple and Conservative Unstructured Sliding-Mesh Approach for Rotor–Fuselage Aerodynamic Interaction Simulation
,”
Proc. Inst. Mech. Eng., Part G
,
231
(
1
), pp.
163
179
.
15.
Jiao
,
L. R.
,
Peng
,
D.
,
Wen
,
X.
,
Liu
,
Y.
, and
Gregory
,
J. W.
,
2018
, “
Experimental Study of the Interaction Between Rotor Wake and a Cylinder in Hover
,”
AIAA
Paper No. 2018-4214.
16.
Açikgöz
,
M. B.
, and
Aslan
,
A. R.
,
2016
, “
Dynamic Mesh Analyses of Helicopter Rotor–Fuselage Flow Interaction in Forward Flight
,”
J. Aerosp. Eng.
,
29
(
6
), p.
04016050
.
17.
Quackenbush
,
T. R.
,
Whitehouse
,
G. R.
, and
Yu
,
M. K.
,
2019
, “
Analysis of Rotor/Airframe Interaction in Hover and Near-Hover Flight Conditions
,”
AIAA
Paper No. 2019-0596.
18.
Shukla
,
D.
, and
Komerath
,
N.
,
2019
, “
Drone Scale Coaxial Rotor Aerodynamic Interactions Investigation
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071106
.
19.
Shukla
,
D.
, and
Komerath
,
N.
,
2019
, “
Rotor–Duct Aerodynamic and Acoustic Interactions at Low Reynolds Number
,”
Exp. Fluids
,
60
(
1
), p.
20
.
20.
Shukla
,
D.
, and
Komerath
,
N.
,
2018
, “
Multirotor Drone Aerodynamic Interaction Investigation
,”
Drones
,
2
(
4
), p.
43
.
21.
Sciacchitano
,
A.
,
Neal
,
D. R.
,
Smith
,
B. L.
,
Warner
,
S. O.
,
Vlachos
,
P. P.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2015
, “
Collaborative Framework for PIV Uncertainty Quantification: Comparative Assessment of Methods
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074004
.
22.
Landgrebe
,
A. J.
,
1971
, “
An Analytical and Experimental Investigation of Helicopter Rotor Hover Performance and Wake Geometry Characteristics
,” United Aircraft Research Labs, East Hartford, CT, Report No. 71–24.
23.
Kocurek
,
J. D.
, and
Tangler
,
J. L.
,
1977
, “
A Prescribed Wake Lifting Surface Hover Performance Analysis
,”
J. Am. Helicopter Soc.
,
22
(
1
), pp.
24
35
.
24.
Ramasamy
,
M.
,
Leishman
,
J. G.
, and
Lee
,
T. E.
,
2007
, “
Flowfield of a Rotating-Wing Micro Air Vehicle
,”
J. Aircr.
,
44
(
4
), pp.
1236
1244
.
25.
Liou
,
S.
,
Komerath
,
N.
, and
McMahon
,
H.
,
1989
, “
Velocity Measurements of Airframe Effects on a Rotor in a Low-Speed Forward Flight
,”
J. Aircr.
,
26
(
4
), pp.
340
348
.
26.
Liou
,
S.
,
Komerath
,
N.
, and
McMahon
,
H.
,
1990
, “
Velocity Field of a Cylinder in the Wake of a Rotor in Forward Flight
,”
J. Aircr.
,
27
(
9
), pp.
804
809
.
You do not currently have access to this content.