Super-hydrophobic coating reduces hydrodynamic drag of rigid surfaces due to separation of a part of the surface from the flow by air. The drag reduction ratio is proportional to the ratio of the surface area covered by air to the whole surface area. The maximum ratio may be achieved for coating with a regular spanwise super-hydrophobic bar. The air–water boundary over such bar would be a capillary wave with wavelength equal the distance between bar apexes. The numerical analysis of such waves was carried out by solving a two-dimensional nonlinear free-boundary problem of ideal fluid theory. Besides several wave shapes, the main computational results include dependencies of wavelengths and dimensionless pressure coefficient necessary for wave maintenance on Weber number. These dependencies make it possible to select the bar size and inflow speed allowing for existence of such waves and the highest drag reduction ratios.

References

References
1.
Makiharju
,
S. A.
,
Perlin
,
M.
, and
Ceccio
,
S. L.
,
2012
, “
On the Energy Economics of Air Lubrication Drag Reduction
,”
Inter. J. Nav. Archit. Oc. Eng.
,
4
, pp.
412
422
.
2.
Gorbachev
,
Y. N.
, and
Amromin
,
E. L.
,
2012
, “
Ship Drag Reduction by Ventilation From Laval to Near Future: Challenges and Successes
,”
Conference Association Technique Maritime et Aéronautique
,
Paris, France
, June.
3.
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2016
, “
Freeman Scholar Review: Passive and Active Skin-Friction Drag Reduction in Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091104
.
4.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2002
, “
Apparent Fluid Slip at Hydrophobic Microchannel
,”
Phys. Fluids
,
14
(
3
), pp.
L9
L12
.
5.
Choi
,
C.-H.
,
Westin
,
K. J. A.
, and
Breuer
,
K. S.
,
2003
, “
Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels
,”
Phys. Fluids
,
15
(10), pp.
2997
3002
.
6.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
16
(
12
), pp.
4635
4643
.
7.
Gogte
,
S.
,
Vorobieff
,
P.
,
Truesdell
,
R.
,
Mammoli
,
A.
,
van Swol
,
F.
,
Shah
,
P.
, and
Brinker
,
C. J.
,
2005
, “
Effective Slip on Textured Superhydrophobic Surfaces
,”
Phys. Fluids
,
17
(
5
), p.
051701
.
8.
Saha
,
A. A.
, and
Mitra
,
S. K.
,
2009
, “
Numerical Study of Capillary Flow in Microchannels With Alternate Hydrophilic-Hydrophobic Bottom Wall
,”
ASME J. Fluids Eng.
,
131
(
6
), p.
061202
.
9.
Aljallis
,
E.
,
Sarshar
,
M. A.
,
Datla
,
R.
,
Sikka
,
V.
,
Jones
,
A.
, and
Choi
,
C.-H.
,
2013
, “
Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flow
,”
Phys. Fluids
,
25
(
2
), p.
025103
.
10.
Daniello
,
R. J.
,
Waterhouse
,
N. E.
, and
Rothstein
,
J. P.
,
2009
, “
Drag Reduction in Turbulent Flows Over Superhydrophobic Surfaces
,”
Phys. Fluids
,
21
(
8
), p.
085103
.
11.
Zhang
,
J.
,
Tian
,
H.
,
Yao
,
Z.
,
Hao
,
P.
, and
Jiang
,
N.
,
2016
, “
Evolutions of Hairpin Vortexes Over a Superhydrophobic Surface in Turbulent Boundary Layer Flow
,”
Phys. Fluids
,
28
(
9
), p.
095106
.
12.
Orlov
,
O.
, and
Sverchkov
,
A.
,
2018
, “
Assessing the Possibility of Applying Hydrophobic Coatings to Reduce Hydrodynamic Resistance of Cargo Carriers
,”
Trans. Krylov Ship Res. Cent.
,
383
, pp.
43
59
(in Russian).
13.
Crowdy
,
D. G.
,
2017
, “
Effective Slip Lengths for Immobilized Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
825
, p.
R2
.
14.
Whitham
,
G. B.
,
1974
,
Linear and Nonlinear Waves
,
Wiley
,
New York
.
15.
Dutykh
,
D.
,
Clamond
,
D.
, and
Durán
,
A.
,
2016
, “
Efficient Computation of Capillary–Gravity Generalised Solitary Waves
,”
Wave Motion
,
65
, pp.
1
16
.
16.
Kučera
,
R.
,
Šátek
,
V.
,
Haslinger
,
J.
,
Fialová
,
S.
, and
Pochylý
,
F.
,
2016
, “
Modeling of Hydrophobic Surfaces by the Stokes Problem With the Stick–Slip Boundary Conditions
,”
ASME J. Fluids Eng.
,
139
(1), p.
011202
.
17.
Seo
,
J.
,
García-Mayoral
,
R.
, and
Mani
,
A.
,
2018
, “
Turbulent Flows Over Superhydrophobic Surfaces: Flow-Induced Capillary Waves, and Robustness of Air–Water Interfaces
,”
J. Fluid Mech.
,
835
, pp.
45
85
.
18.
Ivanov
,
A. N.
,
1980
,
Hydrodynamics of Developed Cavitating Flows
,
Sudostroenie
,
Leningrad
(in Russian).
19.
Amromin
,
E. L.
,
Ivanov
,
A. N.
, and
Sadovnikov
,
D. Y.
,
1994
, “
Bottom Effect on Limiting Stokes Waves
,”
Fluids Dyn.
,
29
(
4
), pp.
540
543
.
20.
Amromin
,
E. L.
, and
Bushkovskii
,
V. A.
,
1983
, “
Linear Programming Use at Non-Linear Problems for the Laplace Equation in Regions With a Free Boundary
,”
J. Comp. Math. Math. Phys.
,
23
(5), pp.
136
139
.
21.
Terentiev
,
A. G.
,
Kirschner
,
I. N.
, and
Uhlman
,
J. S.
,
2011
,
The Hydrodynamics of Cavitating Flows
,
Backbone Publishing
,
Fair Lawn
.
22.
Idelchik
,
I. E.
,
1994
,
Handbook of Hydraulic Resistance
,
Begell House
,
London
.
23.
Amromin
,
E. L.
,
2018
, “
Explanation of the Influence of Inflow Air Content on the Lift of Cavitating Hydrofoils
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
084501
.
24.
Arndt
,
R. E. A.
,
Hambleton
,
J.
,
Kawakami
,
E.
, and
Amromin
,
E. L.
,
2009
, “
Creation and Maintenance of Cavities Under Horizontal Surfaces
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111301
.
You do not currently have access to this content.