Particle image velocimetry (PIV) data processing time can constrain data set size and limit the types of statistical analyses performed. General purpose graphics processing unit (GPGPU) computing can accelerate PIV data processing allowing for larger datasets and accompanying higher order statistical analyses. However, this has not been widespread likely due to limited accessibility to the GPU-PIV hardware and software. Most GPU-PIV software is platform dependent and proprietary, which restricts the computing systems that can be used and makes the details of the algorithm unknown. This work highlights the development of an open-source, cross-platform, GPU-accelerated, PIV algorithm. Validation of the algorithm is done using both synthetic and experimental images. The algorithm was found to accurately resolve the time-averaged flow, instantaneous velocity fluctuations, and vortices. All data processing was done on a GPU supercomputing cluster and notably outperformed the central processing unit version of the software by a factor of 175. The algorithm is freely available and included in the OpenPIV distribution.

References

References
1.
Adrian
,
R. J.
,
2005
, “
Twenty Years of Particle Image Velocimetry
,”
Exp. Fluids
,
39
(
2
), pp.
159
169
.
2.
Braud
,
C.
, and
Liberzon
,
A.
,
2018
, “
Real-Time Processing Methods to Characterize Streamwise Vortices
,”
J. Wind Eng. Ind. Aerodyn.
,
179
, pp.
14
25
.
3.
Schapov
,
V.
,
Pavlinov
,
A.
,
Popova
,
E.
,
Sukhanovskii
,
A.
,
Kalyuin
,
S.
, and
Modorskii
,
V. Y.
,
2019
, “
Supercomputer Real-Time Experimental Data Processing: Technology and Applications
,”
Russian Supercomputing Days (RuSCDays)
,
Moscow, Russia
,
Sept. 24–25
, pp.
641
652
.
4.
Tarashima
,
S.
,
Someya
,
S.
, and
Okamoto
,
K.
,
2011
, “
Acceleration of Recursive Cross-Correlation PIV Using Multiple GPUs
,”
ASME
Paper No. AJTEC2011-44442.
5.
Champagnat
,
F.
,
Plyer
,
A.
,
Le Besnerais
,
G.
,
Leclaire
,
B.
,
Davoust
,
S.
, and
Le Sant
,
Y.
,
2011
, “
Fast and Accurate PIV Computation Using Highly Parallel Iterative Correlation Maximization
,”
Exp. Fluids
,
50
(
4
), pp.
1169
1182
.
6.
Stanislas
,
M.
,
Okamoto
,
K.
,
Kähler
,
C. J.
, and
Westerweel
,
J.
,
2005
, “
Main Results of the Second International PIV Challenge
,”
Exp. Fluids
,
39
(
2
), pp.
170
191
.
7.
Taylor
,
Z. J.
,
Gurka
,
R.
,
Kopp
,
G. A.
, and
Liberzon
,
A.
,
2010
, “
Long-Duration Time-Resolved PIV to Study Unsteady Aerodynamics
,”
IEEE Trans. Instrum. Meas.
,
59
(
12
), pp.
3262
3269
.
8.
Arbizu-Barrena
,
C.
,
Ruiz-Arias
,
J. A.
,
Rodríguez-Benítez
,
F. J.
,
Pozo-Vázquez
,
D.
, and
Tovar-Pescador
,
J.
,
2017
, “
Short-Term Solar Radiation Forecasting by Advecting and Diffusing MSG Cloud Index
,”
Solar Energy
,
155
, pp.
1092
1103
.
9.
Bose
,
S.
,
Kaur
,
M.
,
Chattopadhyay
,
P.
,
Ghosh
,
J.
,
Thomas
,
E.
, and
Saxena
,
Y.
,
2019
, “
Dust Vortices in a Direct Current Glow Discharge Plasma: A Delicate Balance Between Ion Drag and Coulomb Force
,”
J. Plasma Phys.
,
85
(
1
), p. 905850110.
10.
Williams
,
J. D.
,
2016
, “
Application of Particle Image Velocimetry to Dusty Plasma Systems
,”
J. Plasma Phys.
,
82
(
3
), p. 615820302.
11.
Behnel
,
S.
,
Bradshaw
,
R.
,
Citro
,
C.
,
Dalcin
,
L.
,
Seljebotn
,
D. S.
, and
Smith
,
K.
,
2011
, “
Cython: The Best of Both Worlds
,”
Comput. Sci. Eng.
,
13
(
2
), pp.
31
39
.
12.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
1999
, “
Iterative Multigrid Approach in PIV Image Processing With Discrete Window Offset
,”
Exp. Fluids
,
26
(
6
), pp.
513
523
.
13.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.
14.
Klöckner
,
A.
,
Pinto
,
N.
,
Lee
,
Y.
,
Catanzaro
,
B.
,
Ivanov
,
P.
, and
Fasih
,
A.
,
2012
, “
PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation
,”
Parallel Comput.
,
38
(
3
), pp.
157
174
.
15.
Perlman
,
E.
,
Burns
,
R.
,
Li
,
Y.
, and
Meneveau
,
C.
,
2007
, “
Data Exploration of Turbulence Simulations Using a Database Cluster
,”
ACM/IEEE Conference on Supercomputing
(
SC
'07),
Reno, NV
,
Nov. 10–16
, p. 23.
16.
Lecordier
,
B.
, and
Westerweel
,
J.
,
2004
, “
The EUROPIV Synthetic Image Generator (S.I.G
.),”
Particle Image Velocimetry: Recent Improvements
, Springer, Berlin, pp.
145
161
.
17.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
(
7
), pp.
S051
S060
.
18.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1992
, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
,
49
(
3
), pp.
191
215
.
19.
Saikrishnan
,
N.
,
Marusic
,
I.
, and
Longmire
,
E. K.
,
2006
, “
Assessment of Dual Plane PIV Measurements in Wall Turbulence Using DNS Data
,”
Exp. Fluids
,
2
, pp.
265
278
.
20.
Dubief
,
Y.
, and
Delcayre
,
F.
,
2000
, “
On Coherent-Vortex Identification in Turbulence
,”
J. Turbulence
,
1
, p.
N11
.
21.
Haller
,
G.
,
2005
, “
An Objective Definition of a Vortex
,”
J. Fluid Mech.
,
525
, pp.
1
26
.
22.
Falchi
,
M.
, and
Romano
,
G. P.
,
2009
, “
Evaluation of the Performance of High-Speed PIV Compared to Standard PIV in a Turbulent Jet
,”
Exp. Fluids
,
47
(
3
), pp.
509
526
.
23.
Neal
,
D. R.
,
Sciacchitano
,
A.
,
Smith
,
B. L.
, and
Scarano
,
F.
,
2015
, “
Collaborative Framework for PIV Uncertainty Quantification: The Experimental Database
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074003
.
24.
Sciacchitano
,
A.
,
Neal
,
D. R.
,
Smith
,
B. L.
,
Warner
,
S. O.
,
Vlachos
,
P. P.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2015
, “
Collaborative Framework for PIV Uncertainty Quantification: Comparative Assessment of Methods
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074004
.
25.
Lee
,
V. W.
,
Hammarlund
,
P.
,
Singhal
,
R.
,
Dubey
,
P.
,
Kim
,
C.
,
Chhugani
,
J.
,
Deisher
,
M.
,
Kim
,
D.
,
Nguyen
,
A. D.
,
Satish
,
N.
,
Smelyanskiy
,
M.
, and
Chennupaty
,
S.
,
2010
, “
Debunking the 100X GPU vs. CPU Myth
,”
ACM SIGARCH Computer Architecture News
, Vol.
38
, ACM, New York, p.
451
.
26.
NVIDIA, 2018, “
NVIDIA Developer Documentation: Multi-Process Service vR418
,” NVIDIA Corporation, Santa Clara, CA.
27.
Dallas
,
C.
,
Wu
,
M.
,
Chou
,
V.
,
Liberzon
,
A.
, and
Sullivan
,
P.
,
2019
, “
Github—OpenPIV Python GPU
,” OpenPIV (epub).
You do not currently have access to this content.