The flow of oil/water mixtures in a pipe can occur under different flow patterns. Additionally, being able to predict adequately pressure drop in such systems is of relevant importance to adequately design the conveying system. In this work, an experimental and numerical study of the fully dispersed flow regime of an oil/water mixture (liquid paraffin and water) in a horizontal pipe, with concentrations of the oil of 0.01, 0.13, and 0.22 v/v were developed. Experimentally, the values of pressure drop, flow photographs, and radial volumetric concentrations of the oil in the vertical diameter of the pipe cross section were collected. In addition, normalized conductivity values were obtained, in this case, for a cross section of the pipe where an electrical impedance tomography (EIT) ring was installed. Numerical studies were carried out in the comsolmultiphysics platform, using the Euler–Euler approach, coupled with the k–ε turbulence model. In the simulations, two equations for the calculation of the drag coefficient, Schiller–Neumann and Haider–Levenspiel, and three equations for mixture viscosity, Guth and Simba (1936), Brinkman (1952), and Pal (2000), were studied. The simulated data were validated with the experimental results of the pressure drop, good results having been obtained. The best fit occurred for the simulations that used the Schiller–Neumann equation for the calculation of the drag coefficient and the Pal (2000) equation for the mixture viscosity.

References

References
1.
Al-Wahaibi
,
T.
, and
Angeli
,
P.
,
2011
, “
Experimental Study on Interfacial Waves in Stratified Horizontal Oil–Water Flow
,”
Int. J. Multiph. Flow
,
37
(
8
), pp.
930
940
.
2.
Grassi
,
B.
,
Strazza
,
D.
, and
Poesio
,
P.
,
2008
, “
Experimental Validation of Theoretical Models in Two-Phase High-Viscosity Ratio Liquid–Liquid Flows in Horizontal and Slightly Inclined Pipes
,”
Int. J. Multiph. Flow
,
34
(
10
), pp.
950
965
.
3.
Mandal
,
T. K.
,
Chakrabarti
,
D. P.
, and
Das
,
G.
,
2007
, “
Oil Water Flow Through Different Diameter Pipes: Similarities And Differences
,”
Chem. Eng. Res. Des.
,
85
(
8
), pp.
1123
1128
.
4.
Trallero
,
J. L.
,
Sarica
,
C.
, and
Brill
,
J. P.
,
1997
, “
A Study of Oil-Water Flow Patterns in Horizontal Pipes
,”
SPE Prod. Facil.
,
12
(
03
), pp.
165
172
.
5.
Wang
,
M.
,
2015
,
Industrial Tomography: Systems and Applications
,
Elsevier
,
Boston, MA
.
6.
Porombka
,
P.
, and
Höhne
,
T.
,
2015
, “
Drag and Turbulence Modelling for Free Surface Flows Within the Two-Fluid Euler–Euler Framework
,”
Chem. Eng. Sci.
,
134
, pp.
348
359
.
7.
Tornberg
,
A.-K.
, and
Engquist
,
B.
,
2000
, “
A Finite Element Based Level-Set Method for Multiphase Flow Applications
,”
Comput. Vis. Sci.
,
3
(
1–2
), pp.
93
101
.
8.
Rosa
,
E. S.
,
2012
,
Escoamento Multifásico Isotérmico: Modelos de Multifluidos e de Mistura
,
Bookman, Porto Alegre
,
RS, Brasil
.
9.
Ishii
,
M.
,
2006
,
Thermo-Fluid Dynamics of Two Phase-Flow
,
Springer Science-Business Media
,
New York
.
10.
Rodriguez
,
O. M. H.
,
2011
,
Escoamento Multifásico
,
ABCM—Associação Brasileira de Engenharia e Ciências Mecânica
,
Rio de Janeiro, Brasil
.
11.
Wörner
,
M.
,
2003
,
A Compact Introduction to the Numerical Modeling of Multiphase Flows
,
Forschungszentrum Karlsruhe
,
Karlsruhe, Alemanha
.
12.
Hurisse
,
O.
,
2017
, “
Numerical Simulations of Steady and Unsteady Two-Phase Flows Using a Homogeneous Model
,”
Comput. Fluids
,
152
, pp.
88
103
.
13.
Olsen
,
J. E.
, and
Skjetne
,
P.
,
2016
, “
Modelling of Underwater Bubble Plumes and Gas Dissolution With an Eulerian-Lagrangian CFD Model
,”
Appl. Ocean Res.
,
59
, pp.
193
200
.
14.
Ireland
,
P. J.
, and
Desjardins
,
O.
,
2017
, “
Improving Particle Drag Predictions in Euler–Lagrange Simulations With Two-Way Coupling
,”
J. Comput. Phys.
,
338
, pp.
405
430
.
15.
Kommission
,
E.
,
Sommerfeld
,
M.
,
van Wachem
,
B.
,
Oliemans
,
R.
, and
SIAMUF
, eds.,
2008
,
Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multi-Phase Flows
,
European Research Community on Flow, Turbulence and Combustion (ERCOFTAC)
,
Brüssel, Belgium
.
16.
Silva
,
R.
,
2015
, “
Solid/Liquid Suspension Flow in Pipes: Modelling and Experimental Investigation
,” Ph.D. thesis, University of Coimbra, Coimbra, Portugal.
17.
Zhou
,
L. X.
,
2016
, “
A Review for Developing Two-Fluid Modeling and LES of Turbulent Combusting Gas-Particle Flows
,”
Powder Technol.
,
297
, pp.
438
447
.
18.
Duret
,
B.
,
Reveillon
,
J.
,
Menard
,
T.
, and
Demoulin
,
F. X.
,
2013
, “
Improving Primary Atomization Modeling Through DNS of Two-Phase Flows
,”
Int. J. Multiph. Flow
,
55
, pp.
130
137
.
19.
Mollik
,
T.
,
Roy
,
B.
, and
Saha
,
S.
,
2017
, “
Turbulence Modeling of Channel Flow and Heat Transfer: A Comparison With DNS Data
,”
Procedia Eng.
,
194
, pp.
450
456
.
20.
Tsukahara
,
T.
,
Kawase
,
T.
, and
Kawaguchi
,
Y.
,
2011
, “
DNS of Viscoelastic Turbulent Channel Flow With Rectangular Orifice at Low Reynolds Number
,”
Int. J. Heat Fluid Flow
,
32
(
3
), pp.
529
538
.
21.
Hua
,
L.
,
Zhao
,
H.
,
Li
,
J.
,
Wang
,
J.
, and
Zhu
,
Q.
,
2015
, “
Eulerian–Eulerian Simulation of Irregular Particles in Dense Gas–Solid Fluidized Beds
,”
Powder Technol.
,
284
, pp.
299
311
.
22.
Cubero
,
A.
,
Sánchez-Insa
,
A.
, and
Fueyo
,
N.
,
2015
, “
Crossing Trajectories and Phase Change in Eulerian–Eulerian Models of Disperse Multiphase Flows
,”
Int. J. Multiph. Flow
,
72
, pp.
141
144
.
23.
Schillings
,
J.
,
Doche
,
O.
,
Tano Retamales
,
M.
,
Bauer
,
F.
,
Deseure
,
J.
, and
Tardu
,
S.
,
2017
, “
Four-Way Coupled Eulerian–Lagrangian Direct Numerical Simulations in a Vertical Laminar Channel Flow
,”
Int. J. Multiph. Flow
,
89
, pp.
92
107
.
24.
Banowski
,
M.
,
Hampel
,
U.
,
Krepper
,
E.
,
Beyer
,
M.
, and
Lucas
,
D.
,
2017
, “
Experimental Investigation of Two-Phase Pipe Flow With Ultrafast X-Ray Tomography and Comparison With State-of-the-Art CFD Simulations
,”
Nucl. Eng. Des.
,
336
, pp.
90
104
.
25.
Burlutskiy
,
E.
, and
Turangan
,
C. K.
,
2015
, “
A Computational Fluid Dynamics Study on Oil-in-Water Dispersion in Vertical Pipe Flows
,”
Chem. Eng. Res. Des.
,
93
, pp.
48
54
.
26.
Arunkumar
,
S.
,
Adhavan
,
J.
,
Venkatesan
,
M.
,
Das
,
S. K.
, and
Balakrishnan
,
A. R.
,
2016
, “
Two Phase Flow Regime Identification Using Infrared Sensor and Volume of Fluids Method
,”
Flow Meas. Instrum.
,
51
, pp.
49
54
.
27.
Bilger
,
C.
,
Aboukhedr
,
M.
,
Vogiatzaki
,
K.
, and
Cant
,
R. S.
,
2017
, “
Evaluation of Two-Phase Flow Solvers Using Level Set and Volume of Fluid Methods
,”
J. Comput. Phys.
,
345
, pp.
665
686
.
28.
Pozzetti
,
G.
, and
Peters
,
B.
,
2018
, “
A Multiscale DEM-VOF Method for the Simulation of Three-Phase Flows
,”
Int. J. Multiph. Flow
,
99
, pp.
186
204
.
29.
Amiri
,
H. A.
, and
Hamouda
,
A. A.
,
2013
, “
Evaluation of Level Set and Phase Field Methods in Modeling Two Phase Flow With Viscosity Contrast Through Dual-Permeability Porous Medium
,”
Int. J. Multiph. Flow
,
52
, pp.
22
34
.
30.
Olsson
,
E.
,
Kreiss
,
G.
, and
Zahedi
,
S.
,
2007
, “
A Conservative Level Set Method for Two Phase Flow II
,”
J. Comput. Phys.
,
225
(
1
), pp.
785
807
.
31.
Yap
,
Y. F.
,
Li
,
H. Y.
,
Lou
,
J.
,
Pan
,
L. S.
, and
Shang
,
Z.
,
2017
, “
Numerical Modeling of Three-Phase Flow With Phase Change Using the Level-Set Method
,”
Int. J. Heat Mass Transfer
,
115
, pp.
730
740
.
32.
Zhao
,
Y.
,
Zhao
,
C. Y.
, and
Xu
,
Z. G.
,
2018
, “
Numerical Study of Solid-Liquid Phase Change by Phase Field Method
,”
Comput. Fluids
,
164
, pp.
94
101
.
33.
Pouraria
,
H.
,
Seo
,
J. K.
, and
Paik
,
J. K.
,
2016
, “
Numerical Modelling of Two-Phase Oil–Water Flow Patterns in a Subsea Pipeline
,”
Ocean Eng.
,
115
, pp.
135
148
.
34.
Walvekar
,
R. G.
,
Choong
,
T. S. Y.
,
Hussain
,
S. A.
,
Khalid
,
M.
, and
Chuah
,
T. G.
,
2009
, “
Numerical Study of Dispersed Oil–Water Turbulent Flow in Horizontal Tube
,”
J. Pet. Sci. Eng.
,
65
(
3–4
), pp.
123
128
.
35.
Liu
,
N.
,
Wang
,
W.
,
Wang
,
Y.
,
Wang
,
Z.
,
Han
,
J.
,
Wu
,
C.
, and
Gong
,
J.
,
2017
, “
Comparison of Turbulent Flow Characteristics of Liquid-Liquid Dispersed Flow Between CFD Simulations and Direct Measurements With Particle Image Velocimetry
,”
Appl. Therm. Eng.
,
125
, pp.
1209
1217
.
36.
Rodriguez
,
O. M. H.
, and
Baldani
,
L. S.
,
2012
, “
Prediction of Pressure Gradient and Holdup in Wavy Stratified Liquid–Liquid Inclined Pipe Flow
,”
J. Pet. Sci. Eng.
,
96–97
, pp.
140
151
.
37.
Wang
,
W.
,
Gong
,
J.
, and
Angeli
,
P.
,
2011
, “
Investigation on Heavy Crude-Water Two Phase Flow and Related Flow Characteristics
,”
Int. J. Multiph. Flow
,
37
(
9
), pp.
1156
1164
.
38.
Silva
,
R.
,
Garcia
,
F. A. P.
,
Faia
,
P. M.
,
Krochak
,
P.
,
Söderberg
,
D.
,
Lundell
,
F.
, and
Rasteiro
,
M. G.
,
2016
, “
Validating Dilute Settling Suspensions Numerical Data Through MRI, UVP and EIT Measurements
,”
Flow Meas. Instrum.
,
50
, pp.
35
48
.
39.
Cotas
,
C. I. P.
,
2016
, “
Modelling of Fiber Suspensions Flow in Pipes
,”
Ph.D. thesis
, University of Coimbra, Coimbra, Portugal.https://estudogeral.uc.pt/bitstream/10316/29788/1/Modelling%20of%20Fiber%20Suspensions%20Flow%20in%20Pipes.pdf
40.
Faia
,
P. M.
,
Silva
,
R.
,
Rasteiro
,
M. G.
,
Garcia
,
F. A. P.
,
Ferreira
,
A. R.
,
Santos
,
M. J.
,
Santos
,
J. B.
, and
Coimbra
,
A. P.
,
2012
, “
Imaging Particulate Two-Phase Flow in Liquid Suspensions With Electric Impedance Tomography
,”
Part. Sci. Technol.
,
30
(
4
), pp.
329
342
.
41.
Polydorides
,
N.
, and
Lionheart
,
W. R. B.
,
2002
, “
A Matlab Toolkit for Three-Dimensional Electrical Impedance Tomography: A Contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software Project
,”
Meas. Sci. Technol.
,
13
(
12
), pp.
1871
1883
.
42.
Parekh
,
J.
, and
Rzehak
,
R.
,
2018
, “
Euler–Euler Multiphase CFD-Simulation With Full Reynolds Stress Model and Anisotropic Bubble-Induced Turbulence
,”
Int. J. Multiph. Flow
,
99
, pp.
231
245
.
43.
COMSOL Multiphysics
,
2013
, “
User Guide Version 4.4
,” COMSOL Multiphysics, Stockholm, Sweden.
44.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.
45.
Liu
,
Z.
, and
Li
,
B.
,
2018
, “
Scale-Adaptive Analysis of Euler-Euler Large Eddy Simulation for Laboratory Scale Dispersed Bubbly Flows
,”
Chem. Eng. J.
,
338
, pp.
465
477
.
46.
Wachem
,
V. B. G.
,
Schouten
,
J. C.
,
van den Bleek
,
C. M.
,
Krishna
,
R.
, and
Sinclair
,
J. L.
,
2001
, “
Comparative Analysis of CFD Models of Dense Gas–Solid Systems
,”
AIChE J.
,
47
(
5
), pp.
1035
1051
.
47.
Guth
,
E.
, and
Simba
,
R.
,
1936
, “
Investigations of Viscosity of Suspensions and Solutions: Part 3. The Viscosity of Spherical Suspensions
,”
Kolloid-Zeitschrift
,
74
(
3
), pp.
266
275
.
48.
Kundu
,
P.
,
Kumar
,
V.
, and
Mishra
,
I. M.
,
2015
, “
Modeling the Steady-Shear Rheological Behavior of Dilute to Highly Concentrated Oil-in-Water (o/w) Emulsions: Effect of Temperature, Oil Volume Fraction and Anionic Surfactant Concentration
,”
J. Pet. Sci. Eng.
,
129
, pp.
189
204
.
49.
Xu
,
X.-X.
,
2007
, “
Study on Oil–Water Two-Phase Flow in Horizontal Pipelines
,”
J. Pet. Sci. Eng.
,
59
(
1–2
), pp.
43
58
.
50.
Sharma
,
A.
,
Al-Sarkhi
,
A.
,
Sarica
,
C.
, and
Zhang
,
H.-Q.
,
2011
, “
Modeling of Oil–Water Flow Using Energy Minimization Concept
,”
Int. J. Multiph. Flow
,
37
(
4
), pp.
326
335
.
51.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p.
571
.
52.
Pal
,
R.
,
2000
, “
Viscosity-Concentration Equation for Emulsions of Nearly Spherical Droplets
,”
J. Colloid Interface Sci.
,
231
(
1
), pp.
168
175
.
53.
Kuzmin
,
D.
,
Mierka
,
O.
, and
Turek
,
S.
,
2007
, “
On the Implementation of the κ-ε Turbulence Model in Incompressible Flow Solvers Based on a Finite Element Discretisation
,”
Int. J. Comput. Sci. Math.
,
1
(
2/3/4
), p.
193
.
54.
Lopez de Bertodano
,
M.
,
Lahey
,
R. T.
, and
Jones
,
O. C.
,
1994
, “
Development of a K-ɛ Model for Bubbly Two-Phase Flow
,”
ASME J. Fluids Eng.
,
116
(
1
), p.
128
.
55.
Hou
,
B.
,
Wang
,
X.
,
Zhang
,
T.
, and
Li
,
H.
,
2017
, “
A Model for Improving the Euler–Euler Two-Phase Flow Theory to Predict Chemical Reactions in Circulating Fluidized Beds
,”
Powder Technol.
,
321
, pp.
13
30
.
56.
Pond
,
I.
,
Ebadi
,
A.
,
Dubief
,
Y.
, and
White
,
C. M.
,
2017
, “
An Integral Validation Technique of RANS Turbulence Models
,”
Comput. Fluids
,
149
, pp.
150
159
.
57.
COMSOL Multiphysics
,
2013
, “
User Guide Version 5.5
,” COMSOL Multiphysics, Stockholm, Sweden.
58.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cãnada, CA
.
59.
da Silva
,
M.
,
Sad
,
C. M. S.
,
Pereira
,
L. B.
,
Corona
,
R. R. B.
,
Bassane
,
J. F. P.
,
dos Santos
,
F. D.
,
Neto
,
D. M. C.
,
Silva
,
S. R. C.
,
Castro
,
E. V. R.
, and
Filgueiras
,
P. R.
,
2018
, “
Study of the Stability and Homogeneity of Water in Oil Emulsions of Heavy Oil
,”
Fuel
,
226
, pp.
278
285
.
60.
Dražić
,
S.
,
Sladoje
,
N.
, and
Lindblad
,
J.
,
2016
, “
Estimation of Feret's Diameter From Pixel Coverage Representation of a Shape
,”
Pattern Recognit. Lett.
,
80
, pp.
37
45
.
61.
Allen
,
T.
,
2013
,
Particle Size Measurement
,
Springer
,
New York
.
62.
Fangary
,
Y. S.
,
Williams
,
R. A.
,
Neil
,
W. A.
,
Bond
,
J.
, and
Faulks
,
I.
,
1998
, “
Application of Electrical Resistance Tomography to Detect Deposition in Hydraulic Conveying Systems
,”
Powder Technol.
,
95
(
1
), pp.
61
66
.
63.
Norman
,
J. T.
,
Nayak
,
H. V.
, and
Bonnecaze
,
R. T.
,
2005
, “
Migration of Buoyant Particles in Low-Reynolds-Number Pressure-Driven Flows
,”
J. Fluid Mech.
,
523
, pp.
1
35
.
64.
Wang
,
M.
,
Jones
,
T. F.
, and
Williams
,
R. A.
,
2003
, “
Visualization of Asymmetric Solids Distribution in Horizontal Swirling Flows Using Electrical Resistance Tomography
,”
Chem. Eng. Res. Des.
,
81
(
8
), pp.
854
861
.
65.
Giguère
,
R.
,
Fradette
,
L.
,
Mignon
,
D.
, and
Tanguy
,
P. A.
,
2008
, “
Characterization of Slurry Flow Regime Transitions by ERT
,”
Chem. Eng. Res. Des.
,
86
(
9
), pp.
989
996
.
You do not currently have access to this content.