Optical-based experiments were carried out using the immiscible pair of liquids hexane and water in a vertically oriented Taylor–Couette reactor operated in a semibatch mode. The dispersed droplet phase (hexane) was continually fed and removed from the reactor in a closed loop setup. The continuous water phase did not enter or exit the annular gap. Four distinct flow patterns were observed including (1) a pseudo-homogenous dispersion, (2) a weakly banded regime, (3) a horizontally banded dispersion, and (4) a helical flow regime. These flow patterns can be organized into a two-dimensional regime map using the azimuthal and axial Reynolds numbers as axes. In addition, the dispersed phase holdup was found to increase monotonically with both the azimuthal and axial Reynolds numbers. The experimental observations can be explained in the context of a competition between the buoyancy-driven axial flow of hexane droplets and the wall-driven vortex flow of the continuous water phase.

References

References
1.
Thornton
,
J. D.
, and
Pratt
,
H. R. C.
,
1953
, “
Liquid-Liquid Extraction—Part VII: Flooding Rates and Mass Transfer Data for Rotary Annular Columns
,”
Trans. Inst. Chem. Eng.
,
31
(
4
), pp. 289–322.
2.
Bernstein
,
G. J.
,
Grosvenor
,
D. E.
,
Lenc
,
J. F.
, and
Levitz
,
N. M.
,
1973
, “
High-Capacity Annular Centrifugal Contactor
,”
Nucl. Technol.
,
20
(
3
), pp.
200
202
.
3.
Davis
,
M. W.
, and
Weber
,
E. J.
,
1960
, “
Liquid-Liquid Extraction Between Rotating Concentric Cylinders
,”
Ind. Eng. Chem.
,
52
(
11
), pp.
929
934
.
4.
Nakase
,
M.
,
Rokkaku
,
H.
, and
Takeshita
,
K.
,
2013
, “
High-Performance Extraction Operation Using Emulsion Flow Protected by Surfactants in a Liquid-Liquid Countercurrent Centrifugal Extractor
,”
J. Nucl. Sci. Technol.
,
50
(
7
), pp.
723
730
.
5.
Leonard
,
R. A.
,
Bernstein
,
G. J.
,
Pelto
,
R. H.
, and
Ziegler
,
A. A.
,
1981
, “
Liquid‐Liquid Dispersion in Turbulent Couette Flow
,”
AIChE J.
,
27
(
3
), pp.
495
503
.
6.
Haas
,
P. A.
,
1987
, “
Turbulent Dispersion of Aqueous Drops in Organic Liquids
,”
AIChE J.
,
33
(
6
), pp.
987
995
.
7.
Masuda
,
H.
,
Horie
,
T.
,
Hubacz
,
R.
, and
Ohmura
,
N.
,
2013
, “
Process Intensification of Continuous Starch Hydrolysis With a Couette–Taylor Flow Reactor
,”
Chem. Eng. Res. Des.
,
91
(
11
), pp.
2259
2264
.
8.
Grossmann
,
S.
,
Lohse
,
D.
, and
Sun
,
C.
,
2016
, “
High–Reynolds Number Taylor-Couette Turbulence
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp. 53–80.https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-122414-034353
9.
Tanaka
,
R.
,
Kawata
,
T.
, and
Tsukahara
,
T.
,
2018
, “
DNS of Taylor–Couette Flow Between Counter-Rotating Cylinders at Small Radius Ratio
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
10
(
2
), pp.
159
170
.
10.
Wroński
,
S.
,
Dłuska
,
E.
,
Hubacz
,
R.
, and
Molga
,
E.
,
1999
, “
Mass Transfer in Gas–Liquid Couette–Taylor Flow in Membrane Reactor
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2963
2967
.
11.
Djeridi
,
H.
,
Fave
,
J.
, and
Billard
,
J. Y.
,
1999
, “
Bubble Capture and Migration in Couette—Taylor Flow
,”
Exp. Fluids
,
26
(3), pp. 233–239.
12.
Hubacz
,
R.
, and
Wroński
,
S.
,
2004
, “
Horizontal Couette-Taylor Flow in a Two-Phase Gas-Liquid System: Flow Patterns
,”
Exp. Therm. Fluid Sci.
,
28
(
5
), pp.
457
466
.
13.
Dłuska
,
E.
,
Wroński
,
S.
, and
Ryszczuk
,
T.
,
2004
, “
Interfacial Area in Gas-Liquid Couette-Taylor Flow Reactor
,”
Exp. Therm. Fluid Sci.
,
28
(
5
), pp.
467
472
.
14.
Mehel
,
A.
,
Gabillet
,
C.
, and
Djeridi
,
H.
,
2007
, “
Analysis of the Flow Pattern Modifications in a Bubbly Couette-Taylor Flow
,”
Phys. Fluids
,
19
(
11
), pp.
1
5
.
15.
Yoshida
,
K.
,
Tasaka
,
Y.
,
Murai
,
Y.
, and
Takeda
,
T.
,
2009
, “
Mode Transition in Bubbly Taylor-Couette Flow Measured by PTV
,”
J. Phys. Conf. Ser.
,
147
, p.
012013
.
16.
Gao
,
X.
,
Kong
,
B.
, and
Vigil
,
R. D.
,
2015
, “
CFD Investigation of Bubble Effects on Taylor-Couette Flow Patterns in the Weakly Turbulent Vortex Regime
,”
Chem. Eng. J.
,
270
, pp.
508
518
.
17.
Torres Pineda
,
I.
, and
Kang
,
Y. T.
,
2016
, “
CO2 Absorption Enhancement by Nanoabsorbents in Taylor-Couette Absorber
,”
Int. J. Heat Mass Transfer
,
100
, pp.
39
47
.
18.
Gao
,
X.
,
Kong
,
B.
, and
Dennis Vigil
,
R.
,
2016
, “
CFD Simulation of Bubbly Turbulent Tayor–Couette Flow
,”
Chin. J. Chem. Eng.
,
24
(
6
), pp.
719
727
.
19.
Ramezani
,
M.
,
Legg
,
M. J.
,
Haghighat
,
A.
,
Li
,
Z.
,
Vigil
,
R. D.
, and
Olsen
,
M. G.
,
2017
, “
Experimental Investigation of the Effect of Ethyl Alcohol Surfactant on Oxygen Mass Transfer and Bubble Size Distribution in an Air-Water Multiphase Taylor-Couette Vortex Bioreactor
,”
Chem. Eng. J.
,
319
, pp.
288
296
.
20.
Joseph
,
D. D.
,
Nguyen
,
K.
, and
Beavers
,
G. S.
,
1984
, “
Non-Uniqueness and Stability of the Configuration of Flow of Immiscible Fluids With Different Viscosities
,”
J. Fluid Mech.
,
141
(
1
), p.
319
.
21.
Joseph
,
D. D.
,
Singh
,
P.
, and
Chen
,
K.
,
1990
, “
Couette Flows, Rollers, Emulsions, Tall Taylor Cells, Phase Separation and Inversion, and a Chaotic Bubble in Taylor-Couette Flow of Two Immiscible Liquids
,”
Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems
,
F. H.
Busse
and
L.
Kramer
, eds.,
Springer
,
Boston, MA
, pp.
169
189
.
22.
Campero
,
R. J.
, and
Vigil
,
R. D.
,
1997
, “
Spatiotemporal Patterns in Liquid-Liquid Taylor-Couette-Poiseuille Flow
,”
Phys. Rev. Lett.
,
79
(
20
), pp.
3897
3900
.
23.
Campero
,
R. J.
, and
Vigil
,
R. D.
,
1999
, “
Flow Patterns in Liquid−Liquid Taylor−Couette−Poiseuille Flow
,”
Ind. Eng. Chem. Res.
,
38
(
3
), pp.
1094
1098
.
24.
Zhu
,
X.
,
John Campero
,
R.
,
Vigil
,
R. D.
,
Campero
,
R. J.
, and
Vigil
,
R. D.
,
2000
, “
Axial Mass Transport in Liquid-Liquid Taylor-Couette-Poiseuille Flow
,”
Chem. Eng. Sci.
,
55
(
21
), pp.
5079
5087
.
25.
Zhu
,
X.
, and
Vigil
,
R. D.
,
2001
, “
Banded Liquid-Liquid Taylor-Couette-Poiseuille Flow
,”
AIChE J.
,
47
(
9
), pp.
1932
1940
.
26.
Farzad
,
R.
,
Puttinger
,
S.
,
Pirker
,
S.
, and
Schneiderbauer
,
S.
,
2017
, “
Investigation of Droplet Size Distribution for Liquid-Liquid Emulsions in Taylor-Couette Flows
,”
J. Dispers. Sci. Technol.
,
2691
(2), pp. 250–258.
27.
Farzad
,
R.
,
Puttinger
,
S.
,
Pirker
,
S.
, and
Schneiderbauer
,
S.
,
2017
, “
Experimental Investigation of Liquid-Liquid System Drop Size Distribution in Taylor-Couette Flow and Its Application in the CFD Simulation
,”
EPJ Web Conf.
,
143
(
1
), p.
02021
.
28.
Eskin
,
D.
,
Taylor
,
S. D.
, and
Yang
,
D.
,
2017
, “
Modeling of Droplet Dispersion in a Turbulent Taylor–Couette Flow
,”
Chem. Eng. Sci.
,
161
, pp.
36
47
.
29.
Dherbécourt
,
D.
,
Charton
,
S.
,
Lamadie
,
F.
,
Cazin
,
S.
, and
Climent
,
E.
,
2016
, “
Experimental Study of Enhanced Mixing Induced by Particles in Taylor-Couette Flows
,”
Chem. Eng. Res. Des.
,
108
, pp.
109
117
.
30.
Baier
,
G.
, and
Graham
,
M. D.
,
1998
, “
Two-Fluid Taylor–Couette Flow: Experiments and Linear Theory for Immiscible Liquids Between Corotating Cylinders
,”
Phys. Fluids
,
10
(
12
), pp.
3045
3055
.
31.
Baier
,
G.
, and
Graham
,
M. D.
,
2000
, “
Two-Fluid Taylor-Couette Flow With Countercurrent Axial Flow: Linear Theory for Immiscible Liquids Between Corotating Cylinders
,”
Phys. Fluids
,
12
(
2
), pp.
294
303
.
32.
Baier
,
G.
,
Graham
,
M. D.
, and
Lightfoot
,
E. N.
,
2000
, “
Mass Transport in a Novel Two-Fluid Taylor Vortex Extractor
,”
AIChE J.
,
46
(
12
), pp.
2395
2407
.
33.
Sathe
,
M. J.
,
Deshmukh
,
S. S.
,
Joshi
,
J. B.
, and
Koganti
,
S. B.
,
2010
, “
Computational Fluid Dynamics Simulation and Experimental Investigation: Study of Two-Phase Liquid− Liquid Flow in a Vertical Taylor− Couette Contactor
,”
Ind. Eng. Chem. Res.
,
1
, pp.
14
28
.
34.
Qiao
,
J.
,
Deng
,
R.
, and
Wang
,
C.-H.
,
2014
, “
Droplet Behavior in a Taylor Vortex
,”
Int. J. Multiphase Flow
,
67
, pp.
132
139
.
35.
Recktenwald
,
A.
,
Lücke
,
M.
, and
Müller
,
H. W.
,
1993
, “
Taylor Vortex Formation in Axial Through-Flow: Linear and Weakly Nonlinear Analysis
,”
Phys. Rev. E
,
48
(
6
), pp.
4444
4454
.
36.
Wereley
,
S. T.
, and
Lueptow
,
R. M.
,
1998
, “
Spatio-Temporal Character of Non-Wavy and Wavy Taylor–Couette Flow
,”
J. Fluid Mech.
,
364
, pp. 59–80.
37.
Taylor
,
G. I.
,
1923
, “
Stability of a Viscous Liquid Contained Between Two Rotating Cylinders
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
223
(
605–615
), pp.
289
343
.
38.
Shiomi
,
Y.
,
Kutsuna
,
H.
,
Akagawa
,
K.
, and
Ozawa
,
M.
,
1993
, “
Two-Phase Flow in an Annulus With a Rotating Inner Cylinder (Flow Pattern in Bubbly Flow Region)
,”
Nucl. Eng. Des.
,
141
(
1–2
), pp.
27
34
.
You do not currently have access to this content.