For seamless integration of growing electricity production from intermittent renewable energy sources, Francis turbines are under increasing demand to extend their operating range. This requires Francis turbines to operate under off-design conditions, where various types of cavitation are induced. At deep part load condition, an interblade cavitation vortex observed in a runner blade channel is a typical cavitation phenomenon causing pressure fluctuations and erosion, which prevent a reliable operation of Francis turbines at deep part load. The underlying mechanisms of its development are, however, yet to be understood. In an objective of revealing its developing mechanisms, the present study is aimed at investigating flow structures inside runner blade channels by comparison of three different operating conditions at deep part load using numerical simulation results. After demonstrating interblade vortex structures are successfully simulated by performed computations, it is shown that flow inside the runner at deep part load operation is characterized by a remarkable development of recirculating flow on the hub near the runner outlet. This recirculating flow is concluded to be closely associated with interblade vortex development. The skin-friction analyses applied to the hub identify the flow separation caused by a nonuniform distribution of flow, which describes the underlying physical mechanism of interblade vortex development. Investigations are further extended to include a quantitative evaluation of the specific energy loss induced by interblade vortex development. The integration of energy flux defined by rothalpy evidences the energy loss due to the presence of strong interblade vortex structures.

References

References
1.
Avellan
,
F.
,
2004
, “
Introduction to Cavitation in Hydraulic Machinery
,”
Sixth International Conference on Hydraulic Machinery and Hydrodynamics
, Timisoara, Romania, Oct. 21–22, pp.
11
22
.https://www.researchgate.net/publication/313526026_Introduction_to_cavitation_in_hydraulic_machinery
2.
Escaler
,
X.
,
Egusquiza
,
E.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Coussirat
,
M.
,
2006
, “
Detection of Cavitation in Hydraulic Turbines
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
983
1007
.
3.
Rheingans
,
W. J.
,
1940
, “
Power Swings in Hydroelectric Power Plants
,”
Trans. ASME
,
62
, pp.
171
184
.
4.
Jacob
,
T.
, and
Prénat
,
J.
,
1991
, “
Identification of a Hydraulic Turbomachines Hydro-Acoustic Transmission Parameters
,”
IAHR Fifth International Meeting of Work Group on the Behaviour of Hydraulic Machinery Under Steady Oscillatory Conditions
, Milano, Italy.
5.
Koutnik
,
J.
, and
Pulpitel
,
L.
,
1996
, “
Modeling of the Francis Turbine Full-Load Surge
,”
Modeling, Testing and Monitoring for Hydro Power Plants
, Lausanne, Switzerland, July 8–11, pp.
143
154
.
6.
Müller
,
A.
,
Yamamoto
,
K.
,
Alligne
,
S.
,
Yonezawa
,
K.
,
Tsujimoto
,
Y.
, and
Avellan
,
F.
,
2016
, “
Measurement of the Self-Oscillating Vortex Rope Dynamics for Hydroacoustic Stability Analysis
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021206
.
7.
Müller
,
A.
,
Favrel
,
A.
,
Landry
,
C.
, and
Avellan
,
F.
,
2017
, “
Fluid–Structure Interaction Mechanisms Leading to Dangerous Power Swings in Francis Turbines at Full Load
,”
J. Fluids Struct.
,
69
, pp.
56
71
.
8.
Decaix
,
J.
,
Müller
,
A.
,
Favrel
,
A.
,
Avellan
,
F.
, and
Münch
,
C.
,
2017
, “
URANS Models for the Simulation of Full Load Pressure Surge in Francis Turbines Validated by Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121103
.
9.
Nishi
,
M.
, and
Liu
,
S.
,
1982
, “
Flow Regimes in an Elbow-Type Draft Tube
,”
11th IAHR Symposium on Hydraulic Machinery and Systems
, pp.
38/1
13
.
10.
Arpe
,
J.
,
Nicolet
,
C.
, and
Avellan
,
F.
,
2009
, “
Experimental Evidence of Hydroacoustic Pressure Waves in a Francis Turbine Elbow Draft Tube for Low Discharge Conditions
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
081102
.
11.
Favrel
,
A.
,
Müller
,
A.
,
Landry
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2015
, “
Study of the Vortex-Induced Pressure Excitation Source in a Francis Turbine Draft Tube by Particle Image Velocimetry
,”
Exp. Fluids
,
56
(
12
), pp.
1
15
.
12.
Favrel
,
A.
,
Müller
,
A.
,
Landry
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2016
, “
LDV Survey of Cavitation and Resonance Effect on the Precessing Vortex Rope Dynamics in the Draft Tube of Francis Turbines
,”
Exp. Fluids
,
57
(
11
), p. 168.
13.
Favrel
,
A.
,
Gomes Pereira Junior
,
J.
,
Landry
,
C.
,
Müller
,
A.
,
Nicolet
,
C.
, and
Avellan
,
F.
,
2018
, “
New Insight in Francis Turbine Cavitation Vortex Rope: Role of the Runner Outlet Flow Swirl Number
,”
J. Hydraul. Res.
,
56
(
3
), pp.
367
379
.
14.
Javadi
,
A.
,
Bosioc
,
A.
,
Nilsson
,
H.
,
Muntean
,
S.
, and
Susan-Resiga
,
R.
,
2016
, “
Experimental and Numerical Investigation of the Precessing Helical Vortex in a Conical Diffuser, With Rotor-Stator Interaction
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081106
.
15.
Trivedi
,
C.
,
Cervantes
,
M.
,
Gandhi
,
B.
, and
Dahlhaug
,
O.
,
2013
, “
Experimental and Numerical Studies for a High Head Francis Turbine at Several Operating Points
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111102
.
16.
Liu
,
S.
,
Zhang
,
L.
,
Nishi
,
M.
, and
Wu
,
Y.
,
2009
, “
Cavitating Turbulent Flow Simulation in a Francis Turbine Based on Mixture Model
,”
ASME J. Fluids Eng.
,
131
(
5
), p.
0513021
.
17.
Mauri
,
S.
,
Kueny
,
J.
, and
Avellan
,
F.
,
2004
, “
Werlé-Legendre Separation in a Hydraulic Machine Draft Tube
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
976
980
.
18.
Pasche
,
S.
,
Avellan
,
F.
, and
Gallaire
,
F.
,
2017
, “
Part Load Vortex Rope as a Global Unstable Mode
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
051102
.
19.
Farhat
,
M.
,
Natal
,
S.
,
Avellan
,
F.
,
Paquet
,
F.
, and
Couston
,
M.
,
2002
, “
Onboard Measurements of Pressure and Strain Fluctuations in a Model of Low Head Francis Turbine—Part 1: Instruction
,”
21th IAHR Symposium on Hydraulic Machinery and Systems
, Lausanne, Switzerland.
20.
Lowys
,
P. Y.
,
Paquet
,
F.
,
Couston
,
M.
,
Farhat
,
M.
,
Natal
,
S.
, and
Avellan
,
F.
,
2002
, “
Onboard Measurements of Pressure and Strain Fluctuations in a Model of Low Head Francis Turbine—Part 2: Measurements and Preliminary Analysis Results
,”
21th IAHR Symposium on Hydraulic Machinery and Systems
, Lausanne, Switzerland.
21.
Yamamoto
,
K.
,
Müller
,
A.
,
Favrel
,
A.
,
Landry
,
C.
, and
Avellan
,
F.
,
2013
, “
Pressure Measurements and High Speed Visualizations of the Cavitation Phenomena at Deep Part Load Condition in a Francis Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
, 22, p. 022011.
22.
Wack
,
J.
, and
Riedelbauch
,
S.
,
2015
, “
Numerical Simulations of the Cavitation Phenomena in a Francis Turbine at Deep Part Load Conditions
,”
J. Phys.: Conf. Ser.
,
656
(
1
), p. 012074.
23.
Yamamoto
,
K.
,
Müller
,
A.
,
Favrel
,
A.
, and
Avellan
,
F.
,
2017
, “
Experimental Evidence of Inter-Blade Cavitation Vortex Development in Francis Turbines at Deep Part Load Condition
,”
Exp. Fluids
,
58
(
10
), p. 142.
24.
IEC
,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. 60193.
25.
Zwart
,
P.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokohama, Japan, May 30–June 3, Paper No.
152
. https://www.researchgate.net/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics
26.
Egorov
,
Y.
, and
Menter
,
F.
,
2008
, “
Development and Application of SST-SAS Turbulence Model in the DESIDER Project
,” Advances in Hybrid RANS-LES Modelling (Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 97), Springer, Berlin, pp.
261
270
.
27.
Menter
,
F.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 1: Theory and Model Description
,”
Flow, Turbul. Combust.
,
85
(
1
), pp.
113
138
.
28.
Yamamoto
,
K.
,
2017
, “
Hydrodynamics of Francis Turbine Operation at Deep Part Load Condition
,”
Ph.D. thesis
, EPFL, Lausanne, Switzerland.https://infoscience.epfl.ch/record/228897?ln=en
29.
Yamamoto
,
K.
,
Müller
,
A.
,
Favrel
,
A.
,
Landry
,
C.
, and
Avellan
,
F.
,
2017
, “
Flow Characteristics and Influence Associated With Inter-Blade Cavitation Vortices at Deep Part Load Operations of a Francis Turbine
,”
J. Phys.: Conf. Ser.
,
813
(
1
), p. 012029.
30.
Haller
,
G.
,
2005
, “
An Objective Definition of a Vortex
,”
J. Fluid Mech.
,
525
, pp.
1
26
.
31.
Simpson
,
R.
,
1989
, “
Turbulent Boundary Layer Separation
,”
Annu. Rev. Fluid Mech.
,
21
(
1
), pp.
205
234
.
32.
Stratford
,
B.
,
1959
, “
The Prediction of Separation of the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
5
(
1
), pp.
1
16
.
33.
Hasmatuchi
,
V.
,
Farhat
,
M.
,
Roth
,
S.
,
Botero
,
F.
, and
Avellan
,
F.
,
2011
, “
Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051104
.
34.
Jacquet
,
C.
,
Fortes-Patella
,
R.
,
Balarac
,
L.
, and
Houdeline
,
J.-B.
,
2016
, “
CFD Investigation of Complex Phenomena in S-Shape Region of Reversible Pump-Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
, 49, p. 042010.
35.
Pacot
,
O.
,
Kato
,
C.
,
Guo
,
Y.
,
Yamade
,
Y.
, and
Avellan
,
F.
,
2016
, “
Large Eddy Simulation of the Rotating Stall in a Pump-Turbine Operated in Pumping Mode at a Part-Load Condition
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111102
.
36.
Legendre
,
R.
,
1956
, “
Séparation de L'écoulement Laminaire Tridimensionnel
,”
La Rech. Aéronaut.
,
54
, pp.
3
8
.
37.
Lighthill
,
M.
,
1963
, “
Attachment and Separation in Three-Dimensional Flows
,”
Laminar Boundary Layer Theory
,
Oxford University Press
,
Oxford, UK
, pp.
72
82
.
38.
Délery
,
J.
,
2001
, “
Robert Legendre and Henri Werlé: Toward the Elucidation of Three-Dimensional Separation
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
129
154
.
39.
Patel
,
V. C.
, and
Head
,
M. R.
,
1969
, “
Some Observations on Skin Friction and Velocity Profiles in Fully Developed Pipe and Channel Flows
,”
J. Fluid Mech.
,
38
(
1
), pp.
181
201
.
40.
Surana
,
A.
,
Grunberg
,
O.
, and
Haller
,
G.
,
2006
, “
Exact Theory of Three-Dimensional Flow Separation—Part 1: Steady Separation
,”
J. Fluid Mech.
,
564
, pp.
57
103
.
41.
Tobak
,
M.
, and
Peake
,
D. J.
,
1982
, “
Topology of Three-Dimensional Separated Flows
,”
Annu. Rev. Fluid Mech.
,
14
(
1
), pp.
61
85
.
42.
Bosman
,
C.
, and
Jadayel
,
O.
,
1996
, “
A Quantified Study of Rothalpy Conservation in Turbomachines
,”
Int. J. Heat Fluid Flow
,
17
(
4
), pp.
410
417
.
43.
Lyman
,
F.
,
1993
, “
On the Conservation of Rothalpy in Turbomachines
,”
ASME J. Turbomach.
,
115
(
3
), pp.
520
526
.
You do not currently have access to this content.