Proper evaluation of forces exerted on a solid boundary by liquid sloshing is difficult. If the free board in a liquid storage tank is insufficient, the sloshing waves caused by seismic excitation will collide with the tank roof and may cause major damage. The current study investigated the sloshing wave impact force (SWIF) in full-scale liquid storage tanks using numerical simulation based on the lattice Boltzmann method (LBM). Several shaking table tests have been conducted on a small-scale rectangular tank to validate the numerical model. The results of a standard dam break test have been used to express the validity of the proposed numerical model. This comparison confirms the validity of the numerical strategy for simulating the effect of sloshing. After validating the numerical model, it has been applied to a practical parametric study of SWIF in full-scale liquid tanks. The results of numerical simulation indicate that the simplified method recommended by related codes and standards for calculating SWIF in liquid tanks significantly underestimates the sloshing force. This confirms that the dynamic nature of sloshing should be considered in the design process of liquid storage tanks.

References

References
1.
Milgram
,
J. H.
,
1969
, “
The Motion of a Fluid in a Cylindrical Container With a Free Surface Following Vertical Impact
,”
J. Fluid Mech.
,
37
(
3
), pp.
435
448
.
2.
Minowa
,
C.
,
Ogawa
,
N.
,
Harada
,
I.
, and
Ma
,
D. C.
,
1994
, “
Sloshing Roof Impact Tests of a Rectangular Tank
,” Argonne National Laboratory, Lemont, IL, Report No.
ANL/RE/CP-82360
.https://inis.iaea.org/search/search.aspx?orig_q=RN:25069948
3.
Minowa
,
C.
,
1997
, “
Sloshing Impact of a Rectangular Water Tank (Water Tank Damage Caused by the Kobe Earthquake)
,”
Nippon Kikai Gakkai Ronbunshu, C-Hen
,
63
(
612
), pp.
2643
2649
.
4.
Ibrahim
,
R. A.
,
2005
,
Liquid Sloshing Dynamics: Theory and Applications
,
Cambridge University Press
,
New York
.
5.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2009
,
Sloshing
,
Cambridge University Press
,
Cambridge, UK
.
6.
Yi
,
W.
, and
Natsiavas
,
S.
,
1992
, “
Seismic Response of Unanchored Fluid-Filled Tanks Using Finite Elements
,”
ASME J. Pressure Vessel Technol.
,
114
(
1
), pp.
74
79
.
7.
Wu
,
G. X.
,
Ma
,
Q. W.
, and
Eatock Taylor
,
R.
,
1998
, “
Numerical Simulation of Sloshing Waves in a 3D Tank Based on a Finite Element Method
,”
Appl. Ocean Res.
,
20
(
6
), pp.
337
355
.
8.
Mitra
,
S.
,
Upadhyay
,
P. P.
, and
Sinhamahapatra
,
K. P.
,
2008
, “
Slosh Dynamics of Inviscid Fluids in Two‐Dimensional Tanks of Various Geometry Using Finite Element Method
,”
Int. J. Numer. Methods Fluids
,
56
(
9
), pp.
1625
1651
.
9.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2001
, “
An Adaptive Multimodal Approach to Nonlinear Sloshing in a Rectangular Tank
,”
J. Fluid Mech.
,
432
, pp.
167
200
.https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/an-adaptive-multimodal-approach-to-nonlinear-sloshing-in-a-rectangular-tank/D520FD5608316B33C3B778922EAF0FFC
10.
Chen
,
B.-F.
, and
Nokes
,
R.
,
2005
, “
Time-Independent Finite Difference Analysis of Fully Non-Linear and Viscous Fluid Sloshing in a Rectangular Tank
,”
J. Comput. Phys.
,
209
(
1
), pp.
47
81
.
11.
Chen
,
B.-F.
, and
Chiang
,
H.-W.
,
2000
, “
Complete Two-Dimensional Analysis of Sea-Wave-Induced Fully Non-Linear Sloshing Fluid in a Rigid Floating Tank
,”
Ocean Eng.
,
27
(
9
), pp.
953
977
.
12.
Dodge
,
F. T.
,
2000
,
The New Dynamic Behavior of Liquids in Moving Containers
,
Southwest Research Institute
,
San Antonio, TX
, pp.
111
116
.
13.
Kim
,
Y.
,
2001
, “
Numerical Simulation of Sloshing Flows With Impact Load
,”
Appl. Ocean Res.
,
23
(
1
), pp.
53
62
.
14.
Akyildiz
,
H.
, and
Serdar Çelebi
,
M.
,
2001
, “
Numerical Computation of Pressure in a Rigid Rectangular Tank Due to Large Amplitude Liquid Sloshing
,”
Turk. J. Eng. Environ. Sci.
,
25
(
6
), pp.
659
674
.https://journals.tubitak.gov.tr/engineering/abstract.htm?id=5086
15.
Eswaran
,
M.
,
Saha
,
U. K.
, and
Maity
,
D.
,
2009
, “
Effect of Baffles on a Partially Filled Cubic Tank: Numerical Simulation and Experimental Validation
,”
Comput. Struct.
,
87
(
3–4
), pp.
198
205
.
16.
aus der Wiesche
,
S.
,
2008
, “
Sloshing Dynamics of a Viscous Liquid in a Spinning Horizontal Cylindrical Tank
,”
Aerosp. Sci. Technol.
,
12
(
6
), pp.
448
456
.
17.
Veldman
,
A. E.
,
Gerrits
,
J.
,
Luppes
,
R.
,
Helder
,
J. A.
, and
Vreeburg
,
J. P. B.
,
2007
, “
The Numerical Simulation of Liquid Sloshing on Board Spacecraft
,”
J. Comput. Phys.
,
224
(
1
), pp.
82
99
.
18.
Fang
,
Z.-Y.
,
Duan
,
M.-Y.
, and
Zhu
,
R.-Q.
,
2007
, “
Numerical Simulation of Liquid Sloshing in a Liquid Tank Based on Level-Set Method
,”
J. Ship Mech.
,
11
(
1
), pp.
62
67
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-CBLX200701007.htm
19.
Arai
,
M.
,
Cheng
,
L.-Y.
, and
Inoue
,
Y.
,
1995
, “
A Computing Method for the Analysis of Water Impact of Arbitrary Shaped Bodies (2nd Report)
,”
J. Soc. Nav. Archit. Jpn.
,
1995
(
177
), pp.
91
99
.
20.
Arai
,
M.
,
Cheng
,
L.-Y.
, and
Inoue
,
Y.
,
1992
, “
3D Numerical Simulation of Impact Load Due to Liquid Cargo Sloshing
,”
J. Soc. Nav. Archit. Jpn.
,
1992
(
171
), pp.
177
184
.
21.
Rhee
,
S. H.
,
2005
, “
Unstructured Grid Based Reynolds-Averaged Navier-Stokes Method for Liquid Tank Sloshing
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
572
582
.
22.
Sames
,
P. C.
,
Marcouly
,
D.
, and
Schellin
,
T. E.
,
2002
, “
Sloshing in Rectangular and Cylindrical Tanks
,”
J. Ship Res.
,
46
(
3
), pp.
186
200
.https://www.ingentaconnect.com/content/sname/jsr/2002/00000046/00000003/art00004
23.
Price
,
W. G.
, and
Chen
,
Y. G.
,
2006
, “
A Simulation of Free Surface Waves for Incompressible Two‐Phase Flows Using a Curvilinear Level Set Formulation
,”
Int. J. Numer. Methods Fluids
,
51
(
3
), pp.
305
330
.
24.
Chen
,
Y. G.
,
Djidjeli
,
K.
, and
Price
,
W. G.
,
2009
, “
Numerical Simulation of Liquid Sloshing Phenomena in Partially Filled Containers
,”
Comput. Fluids
,
38
(
4
), pp.
830
842
.
25.
Battaglia
,
L.
,
Cruchaga
,
M.
,
Storti
,
M.
,
D'Elía
,
J.
,
Núñez Aedo
,
J.
, and
Reinoso
,
R.
,
2018
, “
Numerical Modelling of 3D Sloshing Experiments in Rectangular Tanks
,”
Appl. Math. Modell.
,
59
, pp.
357
378
.
26.
Shao
,
S.
, and
Lo
,
E. Y.
,
2003
, “
Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows With a Free Surface
,”
Adv. Water Resour.
,
26
(
7
), pp.
787
800
.
27.
Colagrossi
,
A.
, and
Landrini
,
M.
,
2003
, “
Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
191
(
2
), pp.
448
475
.
28.
Souto-Iglesias
,
A.
,
Delorme
,
L.
,
Pérez-Rojas
,
L.
, and
Abril-Pérez
,
S.
,
2006
, “
Liquid Moment Amplitude Assessment in Sloshing Type Problems With Smooth Particle Hydrodynamics
,”
Ocean Eng.
,
33
(
11–12
), pp.
1462
1484
.
29.
Fang
,
J.
,
Parriaux
,
A.
,
Rentschler
,
M.
, and
Ancey
,
C.
,
2009
, “
Improved SPH Methods for Simulating Free Surface Flows of Viscous Fluids
,”
Appl. Numer. Math.
,
59
(
2
), pp.
251
271
.
30.
Koh
,
C. G.
,
Luo
,
M.
,
Gao
,
M.
, and
Bai
,
W.
,
2013
, “
Modelling of Liquid Sloshing With Constrained Floating Baffle
,”
Comput. Struct.
,
122
, pp.
270
279
.
31.
Chen
,
Z.
,
Zong
,
Z.
,
Li
,
H. T.
, and
Li
,
J.
,
2013
, “
An Investigation Into the Pressure on Solid Walls in 2D Sloshing Using SPH Method
,”
Ocean Eng.
,
59
, pp.
129
141
.
32.
Cao Cao
,
X. Y.
,
Ming
,
F. R.
, and
Zhang
,
A. M.
,
2014
, “
Sloshing in a Rectangular Tank Based on SPH Simulation
,”
Appl. Ocean Res.
,
47
, pp.
241
254
.
33.
Li
,
J. G.
,
Hamamoto
,
Y.
,
Liu
,
Y.
, and
Zhang
,
X.
,
2014
, “
Sloshing Impact Simulation With Material Point Method and Its Experimental Validations
,”
Comput. Fluids
,
103
, pp.
86
99
.
34.
You
,
S.
, and
Bathe
,
K.-J.
,
2015
, “
Transient Solution of 3D Free Surface Flows Using Large Time Steps
,”
Comput. Struct.
,
158
, pp.
346
354
.
35.
Tadashi
,
W.
,
2016
, “
Numerical Simulation of Liquid Sloshing Using Arbitrary Lagrangian-Eulerian Level Set Method
,”
Int. J. Multiphys.
,
5
(
4
), pp.
339
352
.
36.
Zuhal
,
O.
,
Fahjan
,
Y. M.
, and
Souli
,
M.
,
2017
, “
Numerical Simulation of Liquid Sloshing in Tanks
,”
Computational Methods in Earthquake Engineering
,
Springer
,
Cham, Switzerland
, pp.
49
79
.
37.
Zhang
,
Y. L.
,
Tang
,
Z. Y.
, and
Wan
,
D. C.
,
2016
, “
MPS-FEM Coupled Method for Interaction Between Sloshing Flow and Elastic Structure in Rolling Tanks
,”
Seventh International Conference on Computational Methods
(
ICCM
), Berkeley, CA, Aug. 1–4, pp.
1
4
.http://dcwan.sjtu.edu.cn/userfiles/1493-6106-1-PB.pdf
38.
Zhang
,
Y.
,
Chen
,
X.
, and
Wan
,
D.
,
2017
, “
Sloshing Flows in an Elastic Tank With High Filling Liquid by MPS-FEM Coupled Method
,”
27th International Ocean and Polar Engineering Conference
, San Francisco, CA, June 25–30, Paper No.
ISOPE-I-17-040
.https://www.onepetro.org/conference-paper/ISOPE-I-17-040
39.
Hejazi
,
F. S.
,
Akhavan
,
M. K.
, and
Mohammadi
,
2019
, “
Investigation on Sloshing Response of Water Rectangular Tanks Under Horizontal and Vertical Near Fault Seismic Excitations
,”
Soil Dyn. Earthquake Eng.
,
116
, pp.
637
653
.
40.
Zhou
,
J. G.
,
2004
,
Lattice Boltzmann Methods for Shallow Water Flows
, Vol.
4
,
Springer
,
Berlin
.
41.
CS Product
,
2016
, “
ProLB
,” CS Product, Le Plessis Robinson, France, accessed June 3, 2019, http://www.prolb-cfd.com/products/solver/
42.
SIMULIA,
2018
, “
PowerFLOW
,” SIMULIA, Waltham, MA.
43.
ANSYS,
2018
, “
CFX
,” ANSYS® Academic Research Mechanical, Release 18.1, ANSYS, Canonsburg, PA.
44.
ANSYS,
2018
, “
Fluent
,” ANSYS® Academic Research Mechanical, Release 18.1,” ANSYS, Canonsburg, PA.
45.
Next Limit Technologies
,
2013
, “
XFlow
,” Next Limit Technologies, Madrid, Spain.
46.
He
,
X.
, and
Luo
,
L.-S.
,
1997
, “
A Priori Derivation of the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
55
(
6
), p.
R6333
.
47.
Owen
,
D. R. J.
,
Leonardi
,
C. R.
, and
Feng
,
Y. T.
,
2011
, “
An Efficient Framework for Fluid–Structure Interaction Using the Lattice Boltzmann Method and Immersed Moving Boundaries
,”
Int. J. Numer. Methods Eng.
,
87
(
1–5
), pp.
66
95
.
48.
Nourgaliev
,
R. R.
,
Dinh
,
T.-N.
,
Theofanous
,
T. G.
, and
Joseph
,
D.
,
2003
, “
The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications
,”
Int. J. Multiphase Flow
,
29
(
1
), pp.
117
169
.
49.
Martys
,
N. S.
, and
Chen
,
H.
,
1996
, “
Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method
,”
Phys. Rev. E
,
53
(
1
), p.
743
.
50.
Luan
,
H.-B.
,
Xu
,
H.
,
Chen
,
L.
,
Sun
,
D.-L.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2011
, “
Evaluation of the Coupling Scheme of FVM and LBM for Fluid Flows Around Complex Geometries
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1975
1985
.
51.
Sterling
,
J. D.
, and
Chen
,
S.
,
1996
, “
Stability Analysis of Lattice Boltzmann Methods
,”
J. Comput. Phys.
,
123
(
1
), pp.
196
206
.
52.
Junk
,
M.
,
Klar
,
A.
, and
Luo
,
L.-S.
,
2005
, “
Asymptotic Analysis of the Lattice Boltzmann Equation
,”
J. Comput. Phys.
,
210
(
2
), pp.
676
704
.
53.
Bouzidi
,
M.
,
Firdaouss
,
M.
, and
Lallemand
,
P.
,
2001
, “
Momentum Transfer of a Boltzmann-Lattice Fluid With Boundaries
,”
Phys. Fluids
,
13
(
11
), pp.
3452
3459
.
54.
Rothman
,
D. H.
, and
Keller
,
J. M.
,
1988
, “
Immiscible Cellular-Automaton Fluids
,”
J. Stat. Phys.
,
52
(
3–4
), pp.
1119
1127
.
55.
Shan
,
X.
, and
Doolen
,
G.
,
1995
, “
Multicomponent Lattice-Boltzmann Model With Interparticle Interaction
,”
J. Stat. Phys.
,
81
(
1–2
), pp.
379
393
.
56.
Enright
,
D.
,
Fedkiw
,
R.
,
Ferziger
,
J.
, and
Mitchell
,
I.
,
2002
, “
A Hybrid Particle Level Set Method for Improved Interface Capturing
,”
J. Comput. Phys.
,
183
(
1
), pp.
83
116
.
57.
Ginzburg
,
I.
,
2002
, “
A Free-Surface Lattice Boltzmann Method for Modelling the Filling of Expanding Cavities by Bingham Fluids
,”
Philos. Trans. R. Soc., A
,
360
(
1792
), pp.
453
466
.
58.
Krafczyk
,
M.
,
Lehmann
,
P.
,
Filippova
,
O.
,
Hänel
,
D.
, and
Lantermann
,
U.
,
2000
, “
Lattice Boltzmann Simulations of Complex Multiphase Flows
,”
Multifield Problems
,
Springer
,
Berlin
, pp.
50
57
.
59.
Janssen
,
C.
, and
Krafczyk
,
M.
,
2010
, “
A Lattice Boltzmann Approach for Free-Surface-Flow Simulations on Non-Uniform Block-Structured Grids
,”
Comput. Math. Appl.
,
59
(
7
), pp.
2215
2235
.
60.
Körner
,
C.
, and
Singer
,
R. F.
,
1999
, “
Numerical Simulation of Foam Formation and Evolution With Modified Cellular Automata
,”
Metal Foams and Porous Metal Structures
, MIT Publication, Bermen, Germany.
61.
Kleefsman
,
K. M. T.
,
Fekken
,
G.
,
Veldman
,
A. E. P.
,
Iwanowski
,
B.
, and
Buchner
,
B.
,
2005
, “
A Volume-of-Fluid Based Simulation Method for Wave Impact Problems
,”
J. Comput. Phys.
,
206
(
1
), pp.
363
393
.
62.
Akkerman
,
I.
,
Bazilevs
,
Y.
,
Kees
,
C. E.
, and
Farthing
,
M. W.
,
2011
, “
Isogeometric Analysis of Free-Surface Flow
,”
J. Comput. Phys.
,
230
(
11
), pp.
4137
4152
.
63.
Xie
,
B.
,
Jin
,
P.
, and
Xiao
,
F.
,
2017
, “
An Unstructured-Grid Numerical Model for Interfacial Multiphase Fluids Based on Multi-Moment Finite Volume Formulation and THINC Method
,”
Int. J. Multiphase Flow
,
89
, pp.
375
398
.
64.
SPHERIC
,
2005
, “
SPHERIC, SPH European Research Interest Community, SIG, Test-Case 2, 3D Dam Breaking, Release 1.1, March 2006, by Réza ISSA and Damien VIOLEAU, Electricité De France, Laboratoire National d'Hydraulique et Environnement
,” accessed June 3, 2019, http://spheric-sph.org/tests/test-2
65.
Danesh
,
P. N.
,
Kabiri
,
M.
, and
Goudarzi
,
M. A.
,
2016
, “
Experimental Investigation of Sloshing Wave Effects on a Fixed Roof Rectangular Storage Tank
,”
J. Seismol. Earthquake Eng.
,
18
(
1
), pp.
23
32
.http://jsee.ir/index.php/jsee/article/view/429
66.
Jaiswal
,
O. R.
,
Rai
,
D. C.
, and
Jain
,
S. K.
,
2007
, “
Review of Seismic Codes on Liquid-Containing Tanks
,”
Earthquake Spectra
,
23
(
1
), pp.
239
260
.
67.
Malhotra
,
P. K.
,
2005
, “
Sloshing Loads in Liquid-Storage Tanks With Insufficient Freeboard
,”
Earthquake Spectra
,
21
(
4
), pp.
1185
1192
.
You do not currently have access to this content.