In this paper, compressible and incompressible flows through planar and axisymmetric sudden expansion channels are investigated numerically. Both laminar and turbulent flows are taken into consideration. Proper preconditioning in conjunction with a second-order accurate advection upstream splitting method (AUSM+-up) is employed. General equations for the loss coefficient and pressure ratio as a function of expansion ratio, Reynolds number, and the inlet Mach number are obtained. It is found that the reattachment length increases by increasing the Reynolds number. Changing the flow regime to turbulent results in a decreased reattachment length. Reattachment length increases slightly with a further increase in Reynolds number. At a given inlet Mach number, the maximum value of the ratio of the reattachment length to step height occurs at the expansion ratio of about two. Moreover, the pressure loss coefficient is a monotonic increasing function of expansion ratio and increases drastically by increasing Mach number. Increasing inlet Mach number from 0.1 to 0.2 results in an increase in pressure loss coefficient by less than 5%. However, increasing inlet Mach number from 0.4 to 0.6 results in an increase in loss coefficient by 70–100%, depending on the expansion ratio. It is revealed that increasing Reynolds number beyond a critical value results in the loss of symmetry for planar expansions. Critical Reynolds numbers change adversely to expansion ratio. The flow regains symmetry when the flow becomes turbulent. Similar bifurcating phenomena are observed beyond a certain Reynolds number in the turbulent regime.

References

References
1.
Javadi
,
A.
, and
Nilsson
,
H.
,
2015
, “
LES and DES of Strongly Swirling Turbulent Flow Through a Suddenly Expanding Circular Pipe
,”
Comput. Fluids
,
107
, pp.
301
313
.
2.
Zohir
,
A. E.
, and
Gomaa
,
A. G.
,
2013
, “
Heat Transfer Enhancement Through Sudden Expansion Pipe Airflow Using Swirl Generator With Different Angles
,”
Exp. Therm. Fluid Sci.
,
45
, pp.
146
154
.
3.
Ma
,
Z. W.
, and
Zhang
,
P.
,
2012
, “
Pressure Drops and Loss Coefficients of a Phase Change Material Slurry in Pipe Fittings
,”
Int. J. Refrig.
,
35
(
4
), pp.
992
1002
.
4.
Dora
,
D. T. K.
,
Panda
,
S. R.
,
Mohanty
,
Y. K.
, and
Roy
,
G. K.
,
2013
, “
Hydrodynamics of Gas-Solid Fluidization of a Homogeneous Ternary Mixture in a Conical Bed: Prediction of Bed Expansion and Bed Fluctuation Ratios
,”
Particuology
,
11
(
6
), pp.
681
688
.
5.
Moallemi
,
N.
, and
Brinkerhoff
,
J. R.
,
2016
, “
Numerical Analysis of Laminar and Transitional Flow in a Planar Sudden Expansion
,”
Comput. Fluids
,
140
, pp.
209
221
.
6.
Cole
,
D. R.
, and
Glauser
,
M. N.
,
1998
, “
Flying Hot-Wire Measurements in an Axisymmetric Sudden Expansion
,”
Exp. Therm. Fluid Sci.
,
18
(
2
), pp.
150
167
.
7.
Fearn
,
R. M.
,
Mullin
,
T.
, and
Cliffe
,
A. K.
,
1990
, “
Nonlinear Flow Phenomena in a Symmetric Sudden Expansion
,”
J. Fluid Mech.
,
211
(
1
), pp.
595
608
.
8.
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Tropea
,
C.
,
1993
, “
The Plane Symmetric Sudden-Expansion Flow at Low Reynolds Numbers
,”
J. Fluid Mech.
,
248
(
1
), pp.
567
581
.
9.
Battaglia
,
F.
, and
Papadopoulos
,
G.
,
2006
, “
Bifurcation Characteristics of Flows in Rectangular Sudden Expansion Channels
,”
ASME J. Fluids Eng.
,
128
(
4
), p.
671
.
10.
Smyth
,
R.
,
1979
, “
Turbulent Flow Over a Plane Symmetric Sudden Expansion
,”
ASME J. Fluids Eng.
,
101
(
3
), p.
348
.
11.
Aloui
,
F.
, and
Souhar
,
M.
,
2000
, “
Experimental Study of Turbulent Asymmetric Flow in a Flat Duct Symmetric Sudden Expansion
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
174
177
.
12.
Escudier
,
M. P.
,
Oliveira
,
P. J.
, and
Poole
,
R. J.
,
2002
, “
Turbulent Flow Through a Plane Sudden Expansion of Modest Aspect Ratio
,”
Phys. Fluids
,
14
(
10
), pp.
3641
3654
.
13.
Casarsa
,
L.
, and
Giannattasio
,
P.
,
2008
, “
Three-Dimensional Features of the Turbulent Flow Through a Planar Sudden Expansion
,”
Phys. Fluids
,
20
(
1
), p. 015103.
14.
Hawa
,
T.
, and
Rusak
,
Z.
,
2001
, “
The Dynamics of a Laminar Flow in a Symmetric Channel With a Sudden Expansion
,”
J. Fluid Mech.
,
436
(1), pp.
283
320
.
15.
Back
,
L. H.
, and
Roschke
,
E. J.
,
1972
, “
Shear-Layer Flow Regimes and Wave Instabilities and Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion
,”
ASME J. Appl. Mech.
,
39
(
3
), p.
677
.
16.
Lantornell
,
D.
, and
Pollard
,
A.
,
1986
, “
Some Observations on the Evolution of Shear Layer Instabilities in Laminar Flow Through Axisymmetric Sudden Expansions
,”
Phys. Fluids
,
29
(
1986
), pp.
2828
2835
.
17.
Sheen
,
H. J.
,
Chen
,
W. J.
, and
Wu
,
J. S.
,
1997
, “
Flow Patterns for an Annular Flow Over an Axisymmetric Sudden Expansion
,”
J. Fluid Mech.
,
350
, pp.
177
188
.
18.
Hammad
,
K. J.
,
Ötügen
,
M. V.
, and
Arik
,
E. B.
,
1999
, “
A PIV Study of the Laminar Axisymmetric Sudden Expansion Flow
,”
Exp. Fluids
,
26
(
3
), pp.
266
272
.
19.
Mullin
,
T.
,
Seddon
,
J. R.
,
Mantle
,
M. D.
, and
Sederman
,
A. J.
,
2009
, “
Bifurcation Phenomena in the Flow Through a Sudden Expansion in a Circular Pipe
,”
Phys. Fluids
,
21
(
1
), p. 014110.
20.
So
,
R. M. C.
,
1987
, “
Inlet Centerline Turbulence Effects on Reattachment Length in Axisymmetric Sudden-Expansion Flows
,”
Exp. Fluids
,
5
(
6
), pp. 424–426.
21.
Gould
,
R. D.
,
Stevenson
,
W. H.
, and
Thompson
,
H. D.
,
1990
, “
Investigation of Turbulent Transport in an Axisymmetric Sudden Expansion
,”
AIAA J.
,
28
(
2
), pp.
276
283
.
22.
Devenport
,
W. J.
, and
Sutton
,
E. P.
,
1993
, “
An Experimental Study of Two Flows Through an Axisymmetric Sudden Expansion
,”
Exp. Fluids
,
14
(
6
), pp.
423
432
.
23.
Battaglia
,
F.
,
Tavener
,
S. J.
,
Kulkarni
,
A. K.
, and
Merkle
,
C. L.
,
1997
, “
Bifurcation of Low Reynolds Number Flows in Symmetric Channels
,”
AIAA J.
,
35
(
1
), pp.
99
105
.
24.
Drikakis
,
D.
,
1997
, “
Bifurcation Phenomena in Incompressible Sudden Expansion Flows
,”
Phys. Fluids
,
9
(
1
), pp.
76
87
.
25.
Kadja
,
M.
, and
Bergeles
,
G.
,
2002
, “
Numerical Investigation of Bifurcation Phenomena Occurring in Flows Through Planar Sudden Expansions
,”
Acta Mech.
,
153
(
1–2
), pp.
47
61
.
26.
Mishra
,
S.
, and
Jayaraman
,
K.
,
2002
, “
Asymmetric Flows in Planar Symmetric Channels With Large Expansion Ratio
,”
Int. J. Numer. Methods Fluids
,
38
(
10
), pp.
945
962
.
27.
Zarghami
,
A.
,
Maghrebi
,
M. J.
,
Ubertini
,
S.
, and
Succi
,
S.
,
2011
, “
Modeling of Bifurcation Phenomena in Suddenly Expanded Flows With a New Finite Volume Lattice Boltzmann Method
,”
Int. J. Mod. Phys. C
,
22
(
9
), pp.
977
1003
.
28.
Quaini
,
A.
,
Glowinski
,
R.
, and
Čanić
,
S.
,
2016
, “
Symmetry Breaking and Preliminary Results About a Hopf Bifurcation for Incompressible Viscous Flow in an Expansion Channel
,”
Int. J. Comput. Fluid Dyn.
,
30
(
1
), pp.
7
19
.
29.
Praveen
,
T.
, and
Eswaran
,
V.
,
2017
, “
Transition to Asymmetric Flow in a Symmetric Sudden Expansion: Hydrodynamics and MHD Cases
,”
Comput. Fluids
,
148
, pp.
103
120
.
30.
Guevel
,
Y.
,
Girault
,
G.
, and
Cadou
,
J. M.
,
2014
, “
Parametric Analysis of Steady Bifurcations in 2D Incompressible Viscous Flow With High Order Algorithm
,”
Comput. Fluids
,
100
, pp.
185
195
.
31.
Patel
,
S.
, and
Drikakis
,
D.
,
2005
, “
Effects of Preconditioning on the Accuracy and Efficiency of Incompressible Flows
,”
Int. J. Numer. Methods Fluids
,
47
(
8–9
), pp.
963
970
.
32.
Dačtekin
,
I.
, and
Ünsal
,
M.
,
2011
, “
Numerical Analysis of Axisymmetric and Planar Sudden Expansion Flows for Laminar Regime
,”
Int. J. Numer. Methods Fluids
,
65
(
9
), pp.
1133
1144
.
33.
Sanmiguel-Rojas
,
E.
, and
Mullin
,
T.
,
2012
, “
Finite-Amplitude Solutions in the Flow Through a Sudden Expansion in a Circular Pipe
,”
J. Fluid Mech.
,
691
, pp.
201
213
.
34.
Duwig
,
C.
,
Salewski
,
M.
, and
Fuchs
,
L.
,
2008
, “
Simulations of a Turbulent Flow Past a Sudden Expansion: A Sensitivity Analysis
,”
AIAA J.
,
46
(
2
), pp.
408
419
.
35.
De Zilwa
,
S. R. N.
,
Khezzar
,
L.
, and
Whitelaw
,
J. H.
,
2000
, “
Flows Through Plane Sudden-Expansions
,”
Int. J. Numer. Methods Fluids
,
32
(
3
), pp.
313
329
.
36.
Guo
,
B.
,
Langrish
,
T. A. G.
, and
Fletcher
,
D. F.
,
2001
, “
Numerical Simulation of Unsteady Turbulent Flow in Axisymmetric Sudden Expansions
,”
ASME J. Fluids Eng.
,
123
(
3
), p.
574
.
37.
Zambrano
,
H.
,
Sigalotti
,
L. D. G.
,
Peña-Polo
,
F.
, and
Trujillo
,
L.
,
2015
, “
Turbulent Models of Oil Flow in a Circular Pipe With Sudden Enlargement
,”
Appl. Math. Model.
,
39
(
21
), pp.
6711
6724
.
38.
Drewry
,
J. E.
,
1978
, “
Fluid Dynamic Characterization of Sudden-Expansion Ramjet Combustor Flowfields X
,”
AIAA J.
,
16
(
4
), pp.
313
319
.
39.
Issa
,
R. I.
,
Gosman
,
A. D.
, and
Watkins
,
A. P.
,
1986
, “
The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme
,”
J. Comput. Phys.
,
62
(
1
), pp.
66
82
.
40.
Emmert
,
T.
,
Lafon
,
P.
, and
Bailly
,
C.
,
2006
, “
Numerical Study of Aeroacoustic Oscillations in Transonic Flow Downstream a Sudden Duct Enlargement
,”
AIAA
Paper No. 2006-2555.
41.
Mularz
,
E. J.
,
Bulzan
,
D. L.
, and
Chen
,
K. H.
,
1993
, “Spray Combustion Experiments and Numerical Predictions,”
National Aeronautics And Space Administration Lewis Research Center
, Cleveland, OH, Report No. NASA-E-7647.
42.
Shuen
,
J.-S.
,
Chen
,
K.-H.
, and
Choi
,
Y.
,
1992
, “
A Time-Accurate Algorithm for Chemical Non-Equilibrium Viscous Flowsat All Speeds
,”
28th Joint Propulsion Conference and Exhibit
,
Nashville, TN
, p.
3639
.
43.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
, London, UK.
44.
Hoffmann
,
K. A. K. A.
,
Chiang
,
S. T.
, and
Chung
,
T. J.
,
2000
,
Computational Fluid Dynamics Volume III
, Engineering Education System, Wichita, KS.
45.
Liou
,
M. S.
,
2006
, “
A Sequel to AUSM—Part II: AUSM+-Up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
.
46.
Weiss
,
J. M.
, and
Smith
,
W. A.
,
1995
, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
,
33
(
11
), pp.
2050
2057
.
47.
Van Leer
,
B.
,
Lee
,
W. T.
, and
Roe
,
P.
,
1991
, “
Characteristic Time-Stepping or Local Preconditioning of the Euler Equations
,”
AIAA
Paper No. A91-40726.
48.
Turkel
,
E.
,
Radespiel
,
R.
, and
Kroll
,
N.
,
1997
, “
Assessment of Preconditioning Methods for Multidimensional Aerodynamics
,”
Comput. Fluids
,
26
(6), pp. 613–634.
49.
Li
,
Z.
, and
Xiang
,
H.
,
2013
, “
The Development of a Navier–Stokes Flow Solver With Preconditioning Method on Unstructured Grids
,”
Eng. Lett.
,
21
(2), pp.
89
94
.
50.
Edwards
,
J. R.
, and
Liou
,
M.-S.
,
1998
, “
Low-Diffusion Flux-Splitting Methods for Flows at All Speeds
,”
AIAA J.
,
36
(
9
), pp.
1610
1617
.
51.
Kermani
,
M. J.
,
Gerber
,
A. G.
, and
Stockie
,
J. M.
,
2003
, “
Thermodynamically Based Moisture Prediction Using Roe's Scheme
,”
Fourth Conference of Iranian Aerospace Society
,
Tehran, Iran
, pp.
27
29
.
52.
Roe
,
P.
,
1986
, “
Characteristic-Based Schemes for the Euler Equations
,”
Annu. Rev. Fluid Mech.
,
18
(
1
), pp.
337
365
.
53.
Liou
,
M. S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.
54.
Poinsot
,
T. J.
, and
Lelef
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
55.
Okong'o
,
N.
, and
Bellan
,
J.
,
2002
, “
Consistent Boundary Conditions for Multicomponent Real Gas Mixtures Based on Characteristic Waves
,”
J. Comput. Phys.
,
176
(
2
), pp.
330
344
.
56.
Kim
,
S.-E.
, and
Choudhury
,
D.
,
1995
, “
A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient
,” Separated and Complex Flows, 1995: Presented at the 1995 ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, Hilton Head, SC, pp. 273–279.
57.
Abbott
,
D. E.
, and
Kline
,
S. J.
,
1962
, “
Experimental Investigation of Subsonic Turbulent Flow Over Single and Double Backward Facing Steps
,”
ASME J. Basic Eng.
,
84
(
3
), p.
317
.
58.
Furuichi
,
N.
,
Takeda
,
Y.
, and
Kumada
,
M.
,
2003
, “
Spatial Structure of the Flow Through an Axisymmetric Sudden Expansion
,”
Exp. Fluids
,
34
(
5
), pp.
643
650
.
59.
Guo
,
B. Y.
,
Hou
,
Q. F.
,
Yu
,
A. B.
,
Li
,
L. F.
, and
Guo
,
J.
,
2013
, “
Numerical Modelling of the Gas Flow Through Perforated Plates
,”
Chem. Eng. Res. Des.
,
91
(
3
), pp.
403
408
.
60.
Bae
,
Y.
, and
Kim
,
Y. I.
,
2014
, “
Prediction of Local Loss Coefficient for Turbulent Flow in Axisymmetric Sudden Expansions With a Chamfer: Effect of Reynolds Number
,”
Ann. Nucl. Energy
,
73
(1), pp.
33
38
.
You do not currently have access to this content.