Based on a novel control scheme, where a steady modification of the streamwise velocity profile leads to complete relaminarization of initially fully turbulent pipe flow, we investigate the applicability and usefulness of custom-shaped honeycombs for such control. The custom-shaped honeycombs are used as stationary flow management devices which generate specific modifications of the streamwise velocity profile. Stereoscopic particle image velocimetry and pressure drop measurements are used to investigate and capture the development of the relaminarizing flow downstream these devices. We compare the performance of straight (constant length across the radius of the pipe) honeycombs with custom-shaped ones (variable length across the radius) and try to determine the optimal shape for maximal relaminarization at minimal pressure loss. The optimally modified streamwise velocity profile is found to be M-shaped, and the maximum attainable Reynolds number for total relaminarization is found to be of the order of 10,000. Consequently, the respective reduction in skin friction downstream of the device is almost by a factor of 5. The break-even point, where the additional pressure drop caused by the device is balanced by the savings due to relaminarization and a net gain is obtained, corresponds to a downstream stretch of distances as low as approximately 100 pipe diameters of laminar flow.

References

References
1.
Garcia-Mayoral
,
R.
, and
Jimenez
,
J.
,
2011
, “
Drag Reduction by Riblets
,”
Philos. Trans. R. Soc. London, Ser. A
,
369
(
1940
), pp.
1412
1427
.
2.
Rothstein
,
J. P.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
89
109
.
3.
Geraldi
,
N. R.
,
Dodd
,
L. E.
,
Xu
,
B. B.
,
Wells
,
G. G.
,
Wood
,
D.
,
Newton
,
M. I.
, and
McHale
,
G.
,
2017
, “
Drag Reduction Properties of Superhydrophobic Mesh Pipes
,”
Surf. Topogr. Metrol. Prop.
,
5
(
3
), p.
034001
.
4.
Jovanovic
,
J.
,
Pashtrapanska
,
M.
,
Frohnapfel
,
B.
,
Durst
,
F.
,
Koskinen
,
J.
, and
Koskinen
,
K.
,
2005
, “
On the Mechanism Responsible for Turbulent Drag Reduction by Dilute Addition of High Polymers: Theory, Experiments, Simulations, and Predictions
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
118
130
.
5.
Campolo
,
M.
,
Simeoni
,
M.
,
Lapasin
,
R.
, and
Soldati
,
A.
,
2015
, “
Turbulent Drag Reduction by Biopolymers in Large Scale Pipes
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041102
.
6.
White
,
C. M.
, and
Mungal
,
M. G.
,
2008
, “
Mechanics and Prediction of Turbulent Drag Reduction With Polymer Additives
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
235
256
.
7.
Choueiri
,
G. H.
,
Lopez
,
J. M.
, and
Hof
,
B.
,
2018
, “
Exceeding the Asymptotic Limit of Polymer Drag Reduction
,”
Phys. Rev. Lett.
,
120
(
12
), p.
124501
.
8.
Kühnen
,
J.
,
Song
,
B.
,
Scarselli
,
D.
,
Budanur
,
N. B.
,
Riedl
,
M.
,
Willis
,
A. P.
,
Avila
,
M.
, and
Hof
,
B.
,
2018
, “
Destabilizing Turbulence in Pipe Flow
,”
Nat. Phys.
,
14
(
4
), pp.
386
390
.
9.
Scarselli
,
D.
,
Kühnen
,
J.
, and
Hof
,
B.
,
2019
, “
Relaminarising Pipe Flow by Wall Movement
,”
J. Fluid Mech.
,
867
, pp.
934
948
.
10.
Kühnen
,
J.
,
Scarselli
,
D.
,
Schaner
,
M.
, and
Hof
,
B.
,
2018
, “
Relaminarization by Steady Modification of the Streamwise Velocity Profile in a Pipe
,”
Flow Turbul. Combust.
,
100
(
4
), pp.
919
943
.
11.
Marensi
,
E.
,
Willis
,
A. P.
, and
Kerswell
,
R. R.
,
2019
, “
Stabilisation and Drag Reduction of Pipe Flows by Flattening the Base Profile
,”
J. Fluid Mech.
,
863
, pp.
850
875
.
12.
Perlin
,
M.
,
Dowling
,
D. R.
, and
Ceccio
,
S. L.
,
2016
, “
Freeman Scholar Review: Passive and Active Skin-Friction Drag Reduction in Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091104
.
13.
Mikhailova
,
N.
,
Repik
,
E.
, and
Sosedko
,
Y.
,
1994
, “
Optimal Control of Free-Stream Turbulence Intensity by Means of Honeycombs
,”
Fluid Dyn.
,
29
(
3
), pp.
429
437
.
14.
Loehrke
,
R. I.
, and
Nagib
,
H. M.
,
1976
, “
Control of Free-Stream Turbulence by Means of Honeycombs: A Balance Between Suppression and Generation
,”
ASME J. Fluids Eng.
,
98
(
3
), pp.
342
351
.
15.
Bradshaw
,
P.
, and
Pankhurst
,
R.
,
1964
, “
The Design of Low-Speed Wind Tunnels
,”
Prog. Aerosp. Sci.
,
5
, pp.
1
69
.
16.
Laws
,
E. M.
, and
Livesey
,
J. L.
,
1978
, “
Flow Through Screens
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
247
266
.
17.
Groth
,
J.
, and
Johansson
,
A. V.
,
1988
, “
Turbulence Reduction by Screens
,”
J. Fluid Mech.
,
197
(
1
), pp.
139
155
.
18.
Oshinowo
,
L.
, and
Kuhn
,
D. C. S.
,
2000
, “
Turbulence Decay Behind Expanded Metal Screens
,”
Can. J. Chem. Eng
,.,
78
(
6
), pp.
1032
1039
.
19.
Lumley
,
J. L.
, and
McMahon
,
J. F.
,
1967
, “
Reducing Water Tunnel Turbulence by Means of a Honeycomb
,”
ASME J. Fluids Eng.
,
89
(
4
), pp.
764
770
.
20.
Farell
,
C.
, and
Youssef
,
S.
,
1996
, “
Experiments on Turbulence Management Using Screens and Honeycombs
,”
ASME J. Fluids Eng.
,
118
(
1
), pp.
26
32
.
21.
Kulkarni
,
V.
,
Sahoo
,
N.
, and
Chavan
,
S. D.
,
2011
, “
Simulation of Honeycomb Screen Combinations for Turbulence Management in a Subsonic Wind Tunnel
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
1
), pp.
37
45
.
22.
Roach
,
P.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
23.
Liu
,
R.
,
Ting
,
D. S.-K.
, and
Checkel
,
M. D.
,
2007
, “
Constant Reynolds Number Turbulence Downstream of an Orificed Perforated Plate
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
897
908
.
24.
Valente
,
P.
, and
Vassilicos
,
J.
,
2011
, “
The Decay of Turbulence Generated by a Class of Multi-Scale Grids
,”
J. Fluid Mech.
,
687
, p.
300
.
25.
Vassilicos
,
J. C.
,
2015
, “
Dissipation in Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
47
(
1
), pp.
95
114
.
26.
Kotansky
,
D. R.
,
1966
, “
The Use of Honeycomb for Shear Flow Generation
,”
AIAA J.
,
4
(
8
), pp.
1490
1491
.
27.
Livesey
,
J. L.
, and
Laws
,
E. M.
,
1973
, “
Simulation of Velocity Profiles by Shaped Gauze Screens
,”
AIAA J.
,
11
(
2
), pp.
184
188
.
28.
Sajben
,
M.
,
Kroutil
,
J.
,
Hoffman
,
G.
, and
Sedrick
,
A.
,
1975
, “
Generation of Velocity Profiles Using Screens of Nonuniform Solidity
,”
AIAA J.
,
13
(
4
), pp.
417
418
.
29.
Ahmed
,
F.
, and
Lee
,
B. E.
,
1997
, “
The Production of Shear Flow Profiles in a Wind Tunnel by a Shaped Honeycomb Technique
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
713
715
.
30.
Zagarola
,
M. V.
, and
Smits
,
A.
,
1998
, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
,
373
(
10
), pp.
33
79
.
31.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
32.
Matisse
,
P.
, and
Gorman
,
M.
,
1984
, “
Neutrally Buoyant Anisotropic Particles for Flow Visualization
,”
Phys. Fluids
,
27
(
4
), pp.
759
760
.
33.
Borrero-Echeverry
,
D.
,
Crowley
,
C. J.
, and
Riddick
,
T. P.
,
2018
, “
Rheoscopic Fluids in a Post-Kalliroscope World
,”
Phys. Fluids
,
30
(
8
), p.
087103
.
34.
Kühnen
,
J.
,
Maier
,
P.
, and
Hof
,
B.
,
2015
, “
Forced Relaminarisation in a Pipe
,”
Gallery Fluid Motion
(epub).https://gfm.aps.org/meetings/dfd-2015/55f6d9aa69702d060da00400
35.
Kühnen
,
J.
,
Riedl
,
M.
,
Scarselli
,
D.
, and
Hof
,
B.
,
2017
, “
Like Cures Like: How to Destroy Turbulence With Turbulence
,”
Gallery Fluid Motion
(epub).https://gfm.aps.org/meetings/dfd-2017/59997842b8ac316d3884197e
36.
Steiner
,
A.
,
1971
, “
On the Reverse Transition of a Turbulent Flow Under the Action of Buoyancy Forces
,”
J. Fluid Mech.
,
47
(
3
), pp.
503
512
.
37.
Jackson
,
J.
,
Cotton
,
M.
, and
Axcell
,
B.
,
1989
, “
Studies of Mixed Convection in Vertical Tubes
,”
Int. J. Heat Fluid Flow
,
10
(
1
), pp.
2
15
.
38.
He
,
S.
,
He
,
K.
, and
Seddighi
,
M.
,
2016
, “
Laminarisation of Flow at Low Reynolds Number Due to Streamwise Body Force
,”
J. Fluid Mech.
,
809
, pp.
31
71
.
39.
Brandt
,
L.
,
2014
, “
The Lift-Up Effect: The Linear Mechanism Behind Transition and Turbulence in Shear Flows
,”
Eur. J. Mech. B. Fluids
,
47
, pp.
80
96
.
40.
Butler
,
K. M.
, and
Farrell
,
B. F.
,
1993
, “
Optimal Perturbations and Streak Spacing in Wall-Bounded Turbulent Shear Flow
,”
Phys. Fluids A
,
5
(
3
), pp.
774
777
.
41.
Meseguer
,
A.
, and
Trefethen
,
L. N.
,
2003
, “
Linearized Pipe Flow at Reynolds Numbers 10,000,000
,”
J. Comp. Phys.
,
186
(
1
), p.
178
.
42.
Avila
,
K.
,
Moxey
,
D.
,
de Lozar
,
A.
,
Avila
,
M.
,
Barkley
,
D.
, and
Hof
,
B.
,
2011
, “
The Onset of Turbulence in Pipe Flow
,”
Science
,
333
(
6039
), pp.
192
196
.
43.
Drazin
,
P. G.
, and
Reid
,
W. H.
,
1981
,
Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
44.
Hof
,
B.
,
Juel
,
A.
, and
Mullin
,
T.
,
2003
, “
Scaling of the Turbulence Transition Threshold in a Pipe
,”
Phys. Rev. Lett.
,
91
(
24
), p.
244502
.
You do not currently have access to this content.