The pressure drop in 90 deg elbows under the operating conditions of geothermal power plants in Mexico is studied using the computational fluid dynamics model. The elbow resistance coefficient was calculated for a steam flow with high Reynolds numbers (1.66–5.81 × 106) and different curvature ratios (1, 1.5, and 2). The simulations were carried out with the commercial software ANSYScfx, which considered the Reynolds-averaged Navier–Stokes (RANS) compressible equations and the renormalization group (RNG) k–ε turbulence model. First, the methodology was validated by comparing the numerical results (velocity and pressure) with published data of airflow (25 °C, 0.1 MPa) with high Reynolds numbers. Then, scenarios with different diameters (0.3–1.0 m) and conditions of the working fluid (0.8–1.2 MPa) were simulated to obtain velocity, pressure, density, and temperature profiles along the pipeline. The temperature and density gradients combined with the compressible effects achieved in the 90 deg elbows modified the flow separation, pressure drop, and resistance coefficient. Based on the resistance coefficient, factors were generated for a new equation, which was integrated into Geosteam.Net to calculate the pressure drop in a pipeline at the Los Azufres geothermal power plant. The difference with the data measured by a pressure transducer was 7.59%, while the equations developed for water or air showed differences between 11.23% and 45.22%.

References

References
1.
Crawford
,
N. M.
,
Cunningham
,
G.
, and
Spence
,
S. W. T.
,
2007
, “
An Experimental Investigation Into the Pressure Drop for Turbulent Flow in 90° Elbow Bends
,”
Proc. Inst. Mech. Eng., Part E
,
221
(
2
), pp.
77
88
.
2.
Al-Tameemi
,
W. M.
, and
Ricco
,
P.
,
2018
, “
Pressure-Loss Coefficient of 90 Deg Sharp-Angled Miter Elbows
,”
ASME. J. Fluids Eng.
,
140
(
6
), p.
061102
.
3.
Kalpakli Vester
,
A.
,
Örlü
,
R.
, and
Alfredsson
,
P.
,
2016
, “
Turbulent Flows in Curved Pipes: Recent Advances in Experiments and Simulations
,”
ASME Appl. Mech. Rev.
,
68
(
5
), p.
050802
.
4.
Verma
,
M. P.
,
2013
, “
Steam Transport Simulation in a Geothermal Pipeline Network Constrained by Internally Consistent Thermodynamic Properties of Water
,”
Rev. Mex. Cienc. Geol.
,
30
(
1
), pp.
210
221
.http://www.scielo.org.mx/pdf/rmcg/v30n1/v30n1a16.pdf
5.
Ellenberger
,
J. P.
,
2010
,
Piping and Pipeline Calculations Manual: Construction, Design Fabrication, and Examination
,
Elsevier
,
Burlington, MA
.
6.
García-Gutiérez
,
A.
,
Hernández
,
A. F.
,
Martínez
,
J. I.
,
Ceceñas
,
M.
,
Ovando
,
R.
, and
Canchola
,
I.
,
2015
, “
Hydraulic Model and Steam Flow Numerical Simulation of the Cerro Prieto Geothermal Field, Mexico, Pipeline Network
,”
Appl. Therm. Eng.
,
75
, pp.
1229
1243
.
7.
Crane,
1988
,
Flow of Fluids Through Valves, Fittings, and Pipes
,
Crane
,
New York
.
8.
Idelchik
,
I. E.
,
1986
,
Handbook of Hydraulic Resistance
,
2nd ed.
,
Hemisphere
,
Washington, DC
.
9.
Martínez-Estrella
,
J. I.
,
García-Gutiérrez
,
A.
,
Hernández-Ochoa
,
A. F.
,
Verma
,
M. P.
,
Mendoza-Covarrubias
,
A.
, and
Ruiz-Lemus
,
A.
,
2010
, “
Simulación Numérica de la Operación de la Red de Transporte de Vapor Del Campo Geotérmico de Los Azufres, Mich
,”
Geotermia
,
23
(
2
), pp.
2
12
.
10.
García-Gutiérrez
,
A.
,
Martínez-Estrella
,
J. I.
,
Hernández-Ochoa
,
A. F.
,
Verma
,
M. P.
,
Mendoza-Covarrubias
,
A.
, and
Ruiz-Lemus
,
A.
,
2010
, “
Development of a Numerical Hydraulic Model of the Los Azufres Steam Pipeline Network
,”
Geothermics
,
32
(
3
), pp.
313
325
.
11.
Hooper
,
W.
,
1981
, “
The Two-K Method Predicts Head Losses in Pipe Fittings
,”
Chem. Eng.
,
88
, pp.
96
100
.
12.
Rennels
,
D. C.
, and
Hudson
,
H. M.
,
2012
,
Pipe Flow: A Practical and Comprehensive Guide
,
Wiley
,
Hoboken, NJ
.
13.
Enayet
,
M. M.
,
Gibson
,
M. M.
,
Taylor
,
A. M. K. P.
, and
Yianneskis
,
M.
,
1982
, “
Laser- Doppler Measurements of Laminar and Turbulent Flow in a Pipe Bend
,”
Int. J. Heat Fluid Flow
,
3
(
4
), pp.
213
219
.
14.
Ono
,
A.
,
Kimura
,
N.
,
Kamide
,
H.
, and
Tobita
,
A.
,
2011
, “
Influence of Elbow Curvature on Flow Structure at Elbow Outlet Under High Reynolds Number Condition
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4409
4419
.
15.
Takamura
,
H.
,
Ebara
,
S.
,
Hashizume
,
H.
,
Aizawa
,
K.
, and
Yamano
,
H.
,
2012
, “
Flow Visualization and Frequency Characteristics of Velocity Fluctuations of Complex Turbulent Flow in a Short Elbow Piping Under High Reynolds Number Condition
,”
ASME J. Fluid Eng.
,
134
(
10
), p.
101201
.
16.
Hüttl
,
T. J.
, and
Friedrich
,
R.
,
2001
, “
Direct Numerical Simulation of Turbulent Flows in Curved and Helically Coiled Pipes
,”
Comput. Fluids
,
30
(
5
), pp.
591
605
.
17.
Noorani
,
A.
,
El Khoury
,
G. K.
, and
Schlatter
,
P.
,
2013
, “
Evolution of Turbulence Characteristics From Straight to Curved Pipes
,”
Int. J. Heat Fluid Flow
,
41
, pp.
16
26
.
18.
Tanaka
,
M. A.
,
Ohshima
,
H.
, and
Monji
,
H.
,
2009
, “
Numerical Investigation of Flow Structure in Pipe Elbow With Large Eddy Simulation Approach
,”
ASME
Paper No. PVP2009-77598.
19.
Rütten
,
F.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2005
, “
Large-Eddy Simulation of Low Frequency Oscillations of the Dean Vortices in Turbulent Pipe Bend Flows
,”
Phys. Fluids
,
17
(
3
), p.
035107
.
20.
Eguchi
,
Y.
,
Murakami
,
T.
,
Tanaka
,
M.
, and
Yamano
,
H.
,
2011
, “
A Finite Element LES for high-Re Flow in a Short-Elbow Pipe With Undisturbed Inlet Velocity
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4368
4378
.
21.
Tan
,
L.
,
Zhu
,
B.
,
Wang
,
Y.
,
Cao
,
S.
, and
Liang
,
K.
,
2014
, “
Turbulent Flow Simulation Using Large Eddy Simulation Combined With Characteristic-Based Split Scheme
,”
Comput. Fluids
,
94
, pp.
161
172
.
22.
Kim
,
J.
,
Yadav
,
M.
, and
Kim
,
S.
,
2014
, “
Characteristics of Secondary Flow Induced by 90-Degree Elbow in Turbulent Pipe Flow
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
2
), pp.
229
239
.
23.
Crawford
,
N.
,
Spence
,
S.
,
Simpson
,
A.
, and
Cunningham
,
G.
,
2009
, “
A Numerical Investigation of the Flow Structures and Losses for Turbulent Flow in 90° Elbow Bends
,”
Proc. Inst. Mech. Eng., Part E
,
223
(
1
), pp.
27
44
.
24.
Dutta
,
P.
, and
Nandi
,
N.
,
2015
, “
Effect of Reynolds Number and Curvature Ratio on Single Phase Turbulent Flow in Pipe Bends
,”
Mech. Mech. Eng.
,
19
(
1
), pp.
5
16
.http://www.kdm.p.lodz.pl/articles/2015/19__1_1.pdf
25.
Dutta
,
P.
,
Saha
,
S. K.
,
Nandi
,
N.
, and
Pal
,
N.
,
2016
, “
Numerical Study on Flow Separation in 90° Pipe Bend Under High Reynolds Number by k-ε Modelling
,”
Eng. Sci. Technol., Int. J.
,
19
(
2
), pp.
904
910
.
26.
Wang
,
Y.
,
Dong
,
Q.
, and
Wang
,
P.
,
2015
, “
Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe With Large Curvature Ratio
,”
Math. Probl. Eng.
,
2015
, pp.
1
12
.
27.
Wang
,
S.
,
Ren
,
C.
,
Sun
,
Y.
,
Yang
,
X.
, and
Tu
,
J.
,
2016
, “
A Study on the Instantaneous Turbulent Flow Field in a 90-Degree Elbow Pipe With Circular Section
,”
Sci. Technol. Nucl. Install.
,
2016
, pp.
1
8
.
28.
Dutta
,
P.
, and
Nandi
,
N.
,
2015
, “
Study on Pressure Drop Characteristics of Single Phase Turbulent Flow in Pipe Bend for High Reynolds Number
,”
ARPN J. Eng. Appl. Sci.
,
10
(
5
), pp.
2221
2226
.http://www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0315_1746.pdf
29.
Wang
,
S.
,
Ren
,
C.
,
Gui
,
N.
,
Sun
,
Y.
,
Tu
,
J.
,
Yang
,
X.
, and
Jiang
,
S.
,
2017
, “
Experimental and Numerical Study on the Circumferential Pressure Distribution on the Wall of a 90° Elbow Pipe With Circular Section
,”
Ann. Nucl. Energy
,
109
, pp.
419
430
.
30.
Dutta
,
P.
, and
Nandi
,
N.
,
2016
, “
Effect of Bend Curvature on Velocity & Pressure Distribution From Straight to a 90° Pipe bend-A Numerical Study
,”
Rest J. Emerging Trends Modell. Manuf.
,
2
, pp.
103
108
.http://restpublisher.com/wp-content/uploads/2017/01/Effect-of-bend-curvature-on-velocity-pressure-distribution-from-straight-to-a-90%C2%B0-pipe-bend-A-Numerical-Study.pdf
31.
Dutta
,
P.
, and
Nandi
,
N.
,
2018
, “
Numerical Study on Turbulent Separation Reattachment Flow in Pipe Bends With Different Small Curvature Ratio
,”
J. Inst. Eng.
(epub).
32.
Verma
,
M. P.
, and
Torres-Encarnación
,
J. A.
,
2018
, “
GeoSteam.Net: Steam Transport Simulator for Geothermal Pipeline Network
,”
43rd Workshop on Geothermal Reservoir Engineering
,
Stanford University, Stanford, CA
,
Feb. 12–14
, pp.
1
6
.
33.
Fernández
,
J. M.
,
2012
,
Técnicas Numéricas en Ingeniería de Fluidos
,
Editorial Reverté
,
Barcelona, Spain
.
34.
Wagner
,
W.
,
Cooper
,
J. R.
,
Dittmann
,
A.
,
Kijima
,
J.
,
Kretzschmar
,
H.-J.
,
Kruse
,
A.
,
Mareš
,
R.
,
Oguchi
,
K.
,
Sato
,
H.
,
Stöcker
,
I.
,
Šifner
,
O.
,
Takaishi
,
Y.
,
Tanishita
,
I.
,
Trübenbach
,
J.
, and
Willkommen
,
T.
,
2000
, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
150
182
.
35.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence I: Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
36.
ANSYS
,
2013
,
ANSYS CFX-Solver Theory Guide, Release 15
,
ANSYS
,
Canonsburg, PA
.
37.
Sudo
,
K.
,
Sumida
,
M.
, and
Hibara
,
H.
,
1998
, “
Experimental Investigation on Turbulent Flow in a Circular-Sectioned 90° Bend
,”
Exp. Fluids
,
25
(
1
), pp.
42
49
.
38.
Ito
,
H.
,
1960
, “
Pressure Losses in Smooth Pipe Bends
,”
ASME J. Basic Eng.
, Ser. D,
82
(
1
), pp.
131
140
.
You do not currently have access to this content.