The paper presents a simplified prediction method to estimate cavitation-induced pressure fluctuations by marine propellers in a nonuniform wake field. It is realized by a very fast calculation of the cavitation volume variation. The sheet cavitation volume is represented by the cavitation area in a two-dimensional section, which is the vapor area inside the cavity contour. The variation of the cavitation area on a two-dimensional blade section has been simplified to a relation in quasi-steady condition with only a limited number of nondimensional parameters. This results in a fast method to predict the cavitation area of a blade section passing a wake peak, using a precalculated database. Application of this method to the prediction of cavitation-induced pressure fluctuations shows to be effective. This makes optimization of propeller sections for minimum cavitation-induced pressure fluctuations feasible.

References

References
1.
Callenaere
,
M.
,
Franc
,
J. P.
,
Michel
,
J. M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.
2.
Breslin
,
J. P.
,
Houten
,
V.
,
Kerwin
,
J. E.
, and
Johnsson
,
C. A.
,
1982
, “
Theoretical and Experimental Propeller-Induced Hull Pressures Arising From Intermittent Blade Cavitation, Loading and Thickness
,”
Trans. SNAME
,
90
, pp.
111
151
.
3.
Hoshino
,
T.
,
Jung
,
J.
,
Kim
,
J. K.
,
Lee
,
J. H.
,
Han
,
J. M.
, and
Park
,
H. G.
,
2010
, “
Full Scale Cavitation Observations and Pressure Fluctuation Measurements by High-Speed Camera System and Correlation With Model Test
,” ISP'10, Okayama, Japan, Apr.
4.
Zeng
,
Z.
, and
Kuiper
,
G.
,
2012
, “
Blade Section Design of Marine Propellers With Maximum Cavitation Inception Speed
,”
J. Hydrodyn.
,
24
(
1
), pp.
65
75
.
5.
Hoshino
,
T.
,
1980
, “
Estimation of Unsteady Cavitation on Propeller Blades as a Base for Predicting Propeller Induced Pressure Fluctuations
,”
J. Soc. Nav. Archit. Jpn.
,
148
, pp.
33
44
.
6.
Geurst
,
J. A.
,
1959
, “
Linearized Theory for Partially Cavitated Hydrofoils
,”
Int. Shipbuild. Prog.
,
6
(
60
), pp.
369
384
.
7.
Uhlman
,
J. S.
,
1987
, “
The Surface Singularity Method Applied to Partially Cavitation Hydrofoils
,”
J. Ship Res.
,
31
(
2
), pp.
107
124
.http://worldcat.org/issn/00224502
8.
Dang
,
J.
, and
Kuiper
,
G.
,
1999
, “
Re-Entrant Jet Modeling of Partial Cavity Flow on Two-Dimensional Hydrofoils
,”
ASME J. Fluid Eng.
,
121
(
4
), pp.
773
780
.
9.
Arndt
,
R. E. A.
,
2012
, “
Some Remarks on Hydrofoil Cavitation
,”
J. Hydrodyn.
,
24
(
3
), pp.
305
314
.
10.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E. O.
,
1998
, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Third International Symposium on Cavitation, Grenoble, France
, Apr., pp.
307
313
.
11.
Coutier-Delgosha
,
O.
,
Reboud
,
J. L.
, and
Fortes-Patella
,
R.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.
12.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modeling of Cavitation Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
,
240
(
1
), pp.
59
96
.
13.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
14.
Schnerr
,
G. H.
,
Schmitdt
,
S.
,
Sezal
,
I.
, and
Thalhamer
,
M.
,
2006
, “
Shock and Wave Dynamics of Compressible Liquid Flows With Special Emphasis on Unsteady Load on Hydrofoils and on Cavitation in Injection Nozzles
,”
Invited Lecture, Sixth International Symposium on Cavitation
,
Wageningen, The Netherlands
, Sept.
15.
Sato
,
K.
,
Oshima
,
A.
,
Egashira
,
H.
, and
Takano
,
S.
,
2009
, “
Numerical Prediction of Cavitation and Pressure Fluctuation Around Marine Propeller
,”
Seventh International Symposium on Cavitation
,
Ann Arbor, MI
,
Aug. 17–22
, Paper No. 141.
16.
Ji
,
B.
,
Luo
,
X. W.
,
Peng
,
X. X.
,
Wu
,
Y. L.
, and
Xu
,
H. Y.
,
2012
, “
Numerical Analysis of Cavitation Evolution and Excited Pressure Fluctuation Around a Propeller in Non-Uniform Wake
,”
Int. J. Multiphase Flow
,
43
, pp.
13
21
.
17.
Zheng
,
C. S.
,
2017
, “
The Numerical Prediction of the Propeller Cavitation and Hull Pressure Fluctuation in the Ship Stern Using OpenFOAM
,”
Fifth International Symposium on Marine Propulsors
,
Espoo, Finland
, June.
18.
Eppler
,
R. A.
,
1980
, “
A Computer Program for the Design and Analysis of Low-Speed Airfoils
,” NASA, Washington, DC, Report No. 80210.
19.
Ma
,
Y.
,
Lu
,
F.
,
Huang
,
H. B.
,
Ding
,
E. B.
,
Zeng
,
Z. B.
, and
Johannsen
,
C.
,
2013
, “
Comparative Research of Cavitation Test Between CLCC and HYKAT
,”
25th National Conference on Hydrodynamics & 12th National Congress on Hydrodynamics
,
Zhoushan, China
,
Sept. 23–25
, pp.
588
594
.
20.
Le
,
Q.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
1993
, “
Partial Cavities: Global Behavior and Mean Pressure Distribution
,”
ASME J. Fluid Eng.
,
115
(
2
), pp.
243
248
.
21.
Zeng
,
Z.
,
Liu
,
D.
, and
Kuiper
,
G.
,
2018
, “
Research on Characteristics of Cavitation Shape Development on Blade Sections
,”
Chin. J. Hydrodyn.
,
33
(
1
), pp.
9
16
.
22.
Jang
,
J. S. R.
,
Sun
,
C. T.
, and
Mizutani
,
E.
,
1997
,
Neuro-Fuzzy and Soft Computing
,
Prentice Hall
, Upper Saddle River, NJ (in Chinese).
23.
Liu
,
X. L.
, and
Wang
,
G. Q.
,
2006
, “
Prediction of Unsteady Performance of Propeller by Potential Based Panel Method
,”
J. Ship Mech.
,
10
(
2
), pp.
30
39
. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cblx200602005
You do not currently have access to this content.