Real-time monitoring of pressure and flow in multiphase flow applications is a critical problem given its economic and safety impacts. Using physics-based models has long been computationally expensive due to the spatial–temporal dependency of the variables and the nonlinear nature of the governing equations. This paper proposes a new reduced-order modeling approach for transient gas–liquid flow in pipes. In the proposed approach, artificial neural networks (ANNs) are considered to predict holdup and pressure drop at steady-state from which properties of the two-phase mixture are derived. The dynamic response of the mixture is then estimated using a dissipative distributed-parameter model. The proposed approach encompasses all pipe inclination angles and flow conditions, does not require a spatial discretization of the pipe, and is numerically stable. To validate our model, we compared its dynamic response to that of OLGA©, the leading multiphase flow dynamic simulator. The obtained results showed a good agreement between both models under different pipe inclinations and various levels of gas volume fractions (GVF). In addition, the proposed model reduced the computational time by four- to sixfolds compared to OLGA©. The above attribute makes it ideal for real-time monitoring and fluid flow control applications.

References

References
1.
Bonizzi
,
M.
,
Andreussi
,
P.
, and
Banerjee
,
S.
,
2009
, “
Flow Regime Independent, High Resolution Multi-Field Modelling of Near-Horizontal Gas–Liquid Flows in Pipelines
,”
Int. J. Multiphase Flow
,
35
(
1
), pp.
34
46
.
2.
Nicklin
,
D. J.
,
1962
, “
Two-Phase Bubble Flow
,”
Chem. Eng. Sci.
,
17
(
9
), pp.
693
702
.
3.
Zuber
,
N.
, and
Findlay
,
J. A.
,
1965
, “
Average Volumetric Concentration in Two-Phase Flow Systems
,”
ASME J. Heat Transfer
,
87
(
4
), p.
453
.
4.
Cunliffe
,
R. S.
,
1978
, “
Prediction of Condensate Flow Rates in Large Diameter High Pressure Wet Gas Pipelines
,”
APPEA J.
,
18
(
1
), p.
171
.
5.
Modisette
,
L.
, and
Whaley
,
R. S.
,
1983
, “
Transient Two-Phase Flow
,”
PSIG Annual Meeting
, Detroit, MI, Oct. 27–28, pp.
27
28
.https://www.onepetro.org/conference-paper/PSIG-8302
6.
Sharma
,
Y.
,
Scoggins
,
M. W.
,
Shoham
,
O.
, and
Brill
,
J. P.
,
1986
, “
Simulation of Transient Two-Phase Flow in Pipelines
,”
ASME J. Energy Resour. Technol.
,
108
(
3
), pp.
202
206
.
7.
Kohda
,
K.
,
Suzukawa
,
Y.
, and
Furukawa
,
H.
,
1988
, “
Analysis of Transient Gas-Liquid Two-Phase Flow in Pipelines
,”
ASME J. Energy Resour. Technol.
,
110
(
2
), pp.
93
101
.
8.
Bendiksen
,
K. H.
,
Maines
,
D.
,
Moe
,
R.
, and
Nuland
,
S.
,
1991
, “
The Dynamic Two-Fluid Model OLGA: Theory and Application
,”
SPE Prod. Eng.
,
6
(
2
), pp.
171
180
.
9.
Black
,
P. S.
,
Daniels
,
L. C.
,
Hoyle
,
N. C.
, and
Jepson
,
W. P.
,
1990
, “
Studying Transient Multi-Phase Flow Using the Pipeline Analysis Code (PLAC)
,”
ASME J. Energy Resour. Technol.
,
112
(
1
), pp.
25
29
.
10.
Goldszal
,
A.
,
Monsen
,
J. I.
,
Danielson
,
T. J.
,
Bansal
,
K. M.
,
Yang
,
Z. L.
,
Johansen
,
S. T.
, and
Depay
,
G.
,
2007
, “
Ledaflow 1D: Simulation Results With Multiphase Gas/Condensate and Oil/Gas Field Data
,” 13th International Conference on Multiphase Production Technology, Edinburgh, UK, June 13–15, Paper No.
BHR-2007-A2
.https://www.onepetro.org/conferences/BHR/BHR07
11.
Poesio
,
P.
,
2017
, “
A Transient, Two Fluid Model for Slug Flow Characterization
,”
AIChE Annual Meeting
, Minneapolis, MN, Oct. 30–31, Paper No. ANL-77-47.https://www.tib.eu/en/search/id/ceaba%3ACEAB1995480520/A-transient-two-fluid-model-for-the-simulation/
12.
Alves
,
M. V. C.
,
Waltrich
,
P. J.
,
Gessner
,
T. R.
,
Falcone
,
G.
, and
Barbosa
,
J. R.
,
2017
, “
Modeling Transient Churn-Annular Flows in a Long Vertical Tube
,”
Int. J. Multiphase Flow
,
89
, pp.
399
412
.
13.
Zhibaedov
,
V. D.
,
Lebedeva
,
N. A.
,
Osiptsov
,
A. A.
, and
Sin'kov
,
K. F.
,
2016
, “
On the Hyperbolicity of One-Dimensional Models for Transient Two-Phase Flow in a Pipeline
,”
Fluid Dyn.
,
51
(
1
), pp.
56
69
.
14.
Ishii
,
M.
,
1977
, “
One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes
,” Argonne National Laboratory Argonne, IL, Report No.
ANL-77-47
.
15.
Malekzadeh
,
R.
,
Belfroid
,
S. P. C.
, and
Mudde
,
R. F.
,
2012
, “
Transient Drift Flux Modelling of Severe Slugging in Pipeline-Riser Systems
,”
Int. J. Multiphase Flow
,
46
, pp.
32
37
.
16.
Spesivtsev
,
P. E.
,
Kharlashkin
,
A. D.
, and
Sinkov
,
K. F.
,
2017
, “
Study of the Transient Terrain-Induced and Severe Slugging Problems by Use of the Drift-Flux Model
,”
SPE J.
,
22
(
5
), pp.
1570
1584
.
17.
Choi
,
J.
,
Pereyra
,
E.
,
Sarica
,
C.
,
Lee
,
H.
,
Jang
,
I. S.
, and
Kang
,
J.
,
2013
, “
Development of a Fast Transient Simulator for Gas–Liquid Two-Phase Flow in Pipes
,”
J. Pet. Sci. Eng.
,
102
, pp.
27
35
.
18.
Wang
,
N.
,
Sun
,
B.
,
Wang
,
Z.
,
Wang
,
J.
, and
Yang
,
C.
,
2016
, “
Numerical Simulation of Two phase flow in Wellbores by Means of Drift Flux Model and Pressure Based Method
,”
J. Nat. Gas Sci. Eng.
,
36
, pp.
811
823
.
19.
Osiptsov
,
A. A.
,
Sin'kov
,
K. F.
, and
Spesivtsev
,
P. E.
,
2014
, “
Justification of the Drift-Flux Model for Two-Phase Flow in a Circular Pipe
,”
Fluid Dyn.
,
49
(
5
), pp.
614
626
.
20.
Pauchon
,
C. L.
, and
Hasmuekh
,
D.
,
1994
, “
TACITE: A Transient Tool for Multiphase Pipeline and Well Simulation
,” SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept. 25–28. Paper No.
SPE-28545-MS
.https://www.onepetro.org/conference-paper/SPE-28545-MS
21.
Holmås
,
K.
, and
Løvli
,
A.
,
2011
, “
Flowmanager™ Dynamic: A Multiphase Flow Simulator for Online Surveillance, Optimization and Prediction of Subsea Oil and Gas Production
,” 15th International Conference on Multiphase Production Technology, Cannes, France, June 15–17, Paper No.
BHR-2011-F3
.https://www.onepetro.org/conference-paper/BHR-2011-F3
22.
Krasnopolsky
,
B.
,
Starostin
,
A.
, and
Osiptsov
,
A. A.
,
2016
, “
Unified Graph-Based Multi-Fluid Model for Gas–Liquid Pipeline Flows
,”
Comput. Math. Appl.
,
72
(
5
), pp.
1244
1262
.
23.
Ishii
,
M.
, and
Hibiki
,
T.
,
2005
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer
,
New York
.
24.
Masella
,
J. M.
,
Tran
,
Q. H.
,
Ferre
,
D.
, and
Pauchon
,
C.
,
1998
, “
Transient Simulation of Two-Phase Flows in Pipes
,”
Int. J. Multiphase Flow
,
24
(
5
), pp.
739
755
.
25.
Spesivtsev
,
P.
,
Sinkov
,
K.
, and
Osiptsov
,
A.
,
2013
, “
Comparison of Drift-Flux and Multi-Fluid Approaches to Modeling of Multiphase Flow in Oil and Gas Wells
,”
WIT Trans. Eng. Sci.
,
79
, pp.
89
99
.
26.
Taitel
,
Y.
,
Shoham
,
O.
, and
Brill
,
J. P.
,
1990
, “
Transient Two-Phase Flow in Low Velocity Hilly Terrain Pipelines
,”
Int. J. Multiphase Flow
,
16
(
1
), pp.
69
77
.
27.
Minami
,
K.
, and
Shoham
,
O.
,
1994
, “
Transient Two-Phase Flow Behavior in Pipelines-Experiment and Modeling
,”
Int. J. Multiphase Flow
,
20
(
4
), pp.
739
752
.
28.
Aarsnes
,
U. J. F.
,
Ambrus
,
A.
,
Vajargah
,
A. K.
,
Aamo
,
O. M.
, and
van Oort
,
E.
,
2015
, “
A Simplified Gas-Liquid Flow Model for Kick Mitigation and Control During Drilling Operations
,”
ASME
Paper No. DSCC2015-9791.
29.
Aarsnes
,
U. J. F.
,
Ambrus
,
A.
,
Di Meglio
,
F.
,
Vajargah
,
A. K.
,
Aamo
,
O. M.
, and
van Oort
,
E.
,
2016
, “
A Simplified Two-Phase Flow Model Using a Quasi-Equilibrium Momentum Balance
,”
Int. J. Multiphase Flow
,
83
, pp.
77
85
.
30.
Kirpalani
,
D.
,
2000
, “
Novel Signal Processing Approaches for Characterization of Transient Two-Phase Gas-Liquid Flow
,” Ph.D. thesis, University of Ottawa, Ottawa, ON.
31.
Fichera
,
A.
, and
Pagano
,
A.
,
2017
, “
A Neural Tool for the Prediction of the Experimental Dynamics of Two-Phase Flows
,”
Int. J. Heat Technol.
,
35
(
2
), pp.
235
242
.
32.
Zou
,
L.
,
Zhao
,
H.
, and
Zhang
,
H.
,
2017
, “
Numerical Uncertainties vs. Model Uncertainties in Two-Phase Flow Simulations
,”
ANS Annual Meeting
, San Francisco, CA, June 11–15, pp.
1255
1258
.
33.
Belozerov
,
A. A.
,
Romenski
,
E. I.
, and
Lebedeva
,
N. A.
,
2018
, “
Numerical Modeling of Gas-Liquid Compressible Pipe Flow Based on the Theory of Thermodynamically Compatible Systems
,”
J. Math. Sci.
,
228
(
4
), pp.
357
371
.
34.
Hu
,
G.
, and
Kozlowski
,
T.
,
2018
, “
A Roe-Type Numerical Solver for the Two-Phase Two-Fluid Six-Equation Model With Realistic Equation of State
,”
Nucl. Eng. Des.
,
326
, pp.
354
370
.
35.
Zou
,
L.
,
Zhao
,
H.
, and
Zhang
,
H.
,
2017
, “
Application of High-Order Numerical Schemes and Newton-Krylov Method to Two-Phase Drift-Flux Model
,”
Prog. Nucl. Energy
,
100
, pp.
427
438
.
36.
Krasnopolsky
,
B. I.
, and
Lukyanov
,
A. A.
,
2018
, “
A Conservative Fully Implicit Algorithm for Predicting Slug Flows
,”
J. Comput. Phys.
,
355
, pp.
597
619
.
37.
Hassoun
,
M. H.
,
1995
,
Fundamentals of Artificial Neural Networks
,
MIT Press
,
Cambridge, MA
, Chap. 5.
38.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1990
, “
Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks
,”
Neural Networks
,
3
(
5
), pp.
551
560
.
39.
Chaari
,
M.
,
Seibi
,
A. C.
,
Ben Hmida
,
J.
, and
Fekih
,
A.
,
2018
, “
An Optimized Artificial Neural Network Unifying Model for Steady-State Liquid Holdup Estimation in Two-Phase Gas–Liquid Flow
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101301
.
40.
Kazi
,
S. N.
,
1999
,
An Overview of Heat Transfer Phenomena
,
InTech
,
London
.
41.
Chaari
,
M.
,
Ben Hmida
,
J.
,
Seibi
,
A. C.
, and
Fekih
,
A.
,
2017
, “
Steady-State Pressure Drop for Two-Phase Flow in Pipelines: An Integrated Genetic Algorithm-Artificial Neural Network Approach
,”
ASME
Paper No. IMECE2017-71854.
42.
Maren
,
A. J.
,
Harston
,
C. T.
, and
Pap
,
R. M.
,
1990
,
Handbook of Neural Computing Applications
,
Academic Press
,
San Diego, CA
, Chap. 15.
43.
Chaari
,
M.
,
Fekih
,
A.
,
Seibi
,
A. C.
, and
Ben Hmida
,
J.
,
2018
, “
A Frequency Domain Approach to Improve ANNs Generalization Quality Via Proper Initialization
,”
Neural Networks
,
104
, pp.
26
39
.
44.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Networks
,
5
(
6
), pp.
989
993
.
45.
Back
,
T.
, and
Hoffmeister
,
F.
,
1991
, “
Extended Selection Mechanisms in Genetic Algorithms
,”
Fourth International Conference on Genetic Algorithms
, San Diego, CA, July 13–16, pp.
92
99
.
46.
Blickle
,
T.
, and
Thiele
,
L.
,
1995
, “
A Comparison of Selection Schemes Used in Genetic Algorithms
,”
Computer Engineering and Communication Networks Lab (TIK)
, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, Report No. 11.
47.
Hong
,
T. P.
,
Wang
,
H. S.
,
Lin
,
W. Y.
, and
Lee
,
W. Y.
,
2002
, “
Evolution of Appropriate Crossover and Mutation Operators in a Genetic Process
,”
Appl. Intell.
,
16
(
1
), pp.
7
17
.
48.
Beggs
,
H. D.
, and
Brill
,
J. P.
,
1973
, “
A Study of Two-Phase Flow in Inclined Pipes
,”
J. Pet. Technol.
,
25
(
5
), pp.
607
617
.
49.
Petalas
,
N.
, and
Aziz
,
K.
,
2000
, “
A Mechanistic Model for Multiphase Flow in Pipes
,”
J. Can. Pet. Technol.
,
39
(
6
), pp.
43
55
.
50.
Meziou
,
A.
,
Chaari
,
M.
,
Franchek
,
M.
,
Borji
,
R.
,
Grigoriadis
,
K.
, and
Tafreshi
,
R.
,
2016
, “
Low-Dimensional Modeling of Transient Two-Phase Flow in Pipelines
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
10
), p.
101008
.
51.
Moody
,
L. F.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
(
8
), pp.
671
684
.https://www.scribd.com/document/206954171/Lewis-F-Moody-Friction-Factor-for-Pipe-Flow-1944
52.
Goudar
,
C. T.
, and
Sonnad
,
J. R.
,
2008
, “
Comparison of the Iterative Approximations of the Colebrook-White Equation
,”
Hydrocarbon Process.
,
87
(
8
), pp.
79
83
.https://www.hydrocarbonprocessing.com/magazine/2008/august-2008/misc/comparison-of-the-iterative-approximations-of-the-colebrook-white-equation
53.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.
54.
Brown
,
F. T.
,
1962
, “
The Transient Response of Fluid Lines
,”
ASME J. Basic Eng.
,
84
(
4
), pp.
547
553
.
55.
Ravindran
,
V. K.
, and
Manning
,
J. R.
,
1973
, “
The Frequency Response of Pneumatic Lines With Branching
,”
ASME J. Dyn. Syst. Meas. Control
,
95
(
2
), pp.
194
196
.
56.
Omrani
,
A.
,
Franchek
,
M. A.
, and
Grigoriadis
,
K.
,
2018
, “
Transmission Line Modeling of Inclined Compressible Fluid Flows
,”
ASME J. Dyn. Syst. Meas. Control
,
140
, p.
011001
.
57.
Hsue
,
C. Y. Y.
, and
Hullender
,
D. A.
,
1983
, “
Modal Approximation for the Fluid Dynamics of Hydraulic and Pneumatic Transmission Lines
,”
Winter Annual Meeting, Fluid Transmission Line Dynamics
, Boston, MA, Nov. 13–18, pp.
51
77
.
58.
Oldenberger
,
R.
, and
Goodson
,
R. E.
,
1964
, “
Simplification of Hydraulic Line Dynamics by Use of Infinite Products
,”
ASME J. Basic Eng.
,
86
(
1
), pp.
1
8
.
59.
OLGA
,
2019
, “
OLGA Dynamic Multiphase Flow Simulator
,” accessed May 29, 2019, https://www.software.slb.com/products/olga
You do not currently have access to this content.