Flow dynamics in a pipe with an abrupt change in diameter was experimentally and numerically analyzed. Two-dimensional stationary Reynolds-averaged Navier–Stokes (RANS) k–ε epsilon model was used to describe the development of axial and radial velocity and turbulent kinetic energy in two cases. The theoretical results were compared with experimental findings gained in a transparent pipe test rig. Particle image velocimetry (PIV) technique was used to analyze the development of flow in a pipe with complex geometry. The measured and modeled velocities and turbulent kinetic energy were found to be in good agreement. The two-dimensional stationary RANS k–ε model is suitable for the analysis of the flow dynamics in real old rough pipes where the pipe wall build-up leads to changes in the actual diameter of the pipe but the flow can still be considered axially symmetrical.

References

References
1.
Lansey
,
K. E.
,
El-Shorbagy
,
W.
,
Ahmed
,
I.
,
Araujo
,
J.
, and
Haan
,
C. T.
,
2001
, “
Calibration Assessment and Data Collection for Water Distribution Networks
,”
J. Hydraul. Eng.
,
127
(
4
), pp.
270
279
.
2.
Christensen
,
R. T.
,
Spall
,
R. E.
, and
Barfuss
,
S. L.
,
2011
, “
Application of Three RANS Turbulence Models to Aged Water Transmission Pipes
,”
J. Hydraul. Eng.
,
137
(
1
), pp.
135
139
.
3.
Vassiljev
,
A.
, and
Koppel
,
T.
,
2015
, “
Estimation of Real-Time Demands on the Basis of Pressure Measurements by Different Optimization Methods
,”
Adv. Eng. Software
,
80
, pp.
67
71
.
4.
Annus
,
I.
, and
Vassiljev
,
A.
,
2015
, “
Different Approaches for Calibration of an Operational Water Distribution System Containing Old Pipes
,”
Proc. Eng.
,
119
, pp.
526
534
.
5.
Boxall
,
J. B.
,
Saul
,
A. J.
, and
Skipworth
,
P. J.
,
2004
, “
Modeling for Hydraulic Capacity
,”
J. Am. Water Works Assoc.
,
96
(
4
), pp.
161
169
.
6.
Vijiapurapu
,
S.
, and
Cui
,
J.
,
2007
, “
Simulation of Turbulent Flow in a Ribbed Pipe Using Large Eddy Simulation
,”
Numer. Heat Transfer, Part A
,
51
(
12
), pp.
1137
1165
.
7.
Vijiapurapu
,
S.
, and
Cui
,
J.
,
2010
, “
Performance of Turbulence Models for Flows Through Rough Pipes
,”
Appl. Math. Modell.
,
34
(
6
), pp.
1458
1466
.
8.
Stel
,
H.
,
Morales
,
R. E. M.
,
Franco
,
A. T.
,
Junqueira
,
S. L. M.
,
Erthal
,
R. H.
, and
Gonc¸alves
,
M. A. L.
,
2010
, “
Numerical and Experimental Analysis of Turbulent Flow in Corrugated Pipes
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
071203
.
9.
Stel
,
H.
,
Franco
,
A. T.
,
Junqueira
,
S. L. M.
,
Erthal
,
R. H.
,
Mendes
,
R.
,
Gonçalves
,
M. A. L.
, and
Morales
,
R. E. M.
,
2012
, “
Turbulent Flow in D-Type Corrugated Pipes: Flow Pattern and Friction Factor
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121202
.
10.
Calomino
,
F.
,
Tafarojnoruz
,
A.
,
De Marchis
,
M.
,
Gaudio
,
R.
, and
Napoli
,
E.
,
2015
, “
Experimental and Numerical Study in the Flow Field and Friction Factor in a Pressurized Corrugated Pipe
,”
J. Hydraul. Eng.
,
141
(
11
), p.
04015027
.
11.
Christensen
,
R. T.
,
2009
, “
Age Effects on Iron-Based Pipes in Water Distribution Systems
,” Ph.D. thesis, Utah State University, Logan, UT.
12.
Mullin
,
T.
,
Seddon
,
J. R. T.
,
Mantle
,
M. D.
, and
Sederman
,
A. J.
,
2009
, “
Bifurcation Phenomena in the Flow Through a Sudden Expansion in a Circular Pipe
,”
Phys. Fluids
,
21
(
1
), p.
014110
.
13.
Sanmiguel-Rojas
,
E.
,
del Pino
,
C.
, and
Gutiérrez-Montes
,
C.
,
2010
, “
Global Mode Analysis of a Pipe Flow Through a 1:2 Axisymmetric Sudden Expansion
,”
Phys. Fluids
,
22
(
7
), p.
071702
.
14.
Sanmiguel-Rojas
,
E.
, and
Mullin
,
T.
,
2012
, “
Finite-Amplitude Solutions in the Flow Through a Sudden Expansion in a Circular Pipe
,”
J. Fluid Mech.
,
691
, pp.
201
213
.
15.
Ding
,
D.
, and
Wu
,
S.
,
2010
, “
Numerical Application of k–ɛ Turbulence Model to the Flow Over a Backward-Facing Step
,”
Sci. China: Technol. Sci.
,
53
(
10
), pp.
2817
2825
.
16.
Schäfer
,
F.
,
Breuer
,
M.
, and
Durst
,
F.
,
2009
, “
The Dynamics of the Transitional Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
623
, pp.
85
119
.
17.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.
18.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech.
,
3
(
2
), pp.
269
289
.
19.
Davidson
,
P. A.
,
2006
,
Turbulence. An Introduction for Scientists and Engineers
,
Oxford University Press
,
New York
.
20.
Launder
,
B. E.
,
Morse
,
A. P.
,
Rodi
,
W.
, and
Spalding
,
D. B.
,
1972
, “
The Prediction of Free Shear Flows—A Comparison of Six Turbulence Models
,” NASA Free Shear Flows Conference, VA, Report No. NASA SP-311.
21.
Pope
,
S. B.
,
1978
, “
An Explanation of the Round Jet/Plane Jet Anomaly
,”
AIAA J.
,
16
(
3
), pp.
279
281
.
22.
Smith
,
E. J.
,
Mi
,
J.
,
Nathan
,
G. J.
, and
Dally
,
B. B.
,
2004
, “
Preliminary Examination of a ‘Round Jet Initial Condition Anomaly’ for the k–ε Turbulence Model
,”
15th Australasian Fluid Mechanics Conference
, Sydney, Australia, Dec. 13–17, pp.
1
4
.https://www.researchgate.net/publication/237370895_Preliminary_Examination_of_a_Round_Jet_Initial_Condition_Anomaly_for_the_k-e_ee_e_Turbulence_Model
23.
Mackenzie
,
A.
,
Lopez
,
A.
,
Riros
,
K.
,
Stickland
,
M. T.
, and
Dempster
,
W. M. A.
,
2015
, “
Comparison of CFD Software Packages' Ability to Model a Submerged Jet
,”
11th International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia
, Dec. 7–9, pp.
1
4
.
24.
Fertziger
,
J. H.
, and
Perić
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin, Germany
.
25.
Kartushinsky
,
A.
,
Michaelides
,
E.
,
Hussainov
,
M.
, and
Rudi
,
Y.
,
2009
, “
Effects of the Variation of Mass Loading and Particle Density in Gas-Solid Particle Flow in Pipes
,”
Powder Technol.
,
193
, pp.
176
181
.
26.
Perić
,
M.
, and
Scheuerer
,
G.
,
1989
, “
CAST—A Finite Volume Method for Predicting Two-Dimensional Flow and Heat Transfer Phenomena
,” GRS Technische Notiz, Köln, Germany, Report No. GRS-TN-SRR-89-01.
27.
Kartushinsky
,
A.
,
Rudi
,
Y.
,
Stock
,
D.
,
Hussainov
,
M.
,
Shcheglov
,
I.
, and
Tisler
,
S.
,
2013
, “
3D RANS-RSTM Numerical Simulation of Channel Turbulent Particulate Flow With Wall Roughness
,”
11th International Conference Numerical Analysis and Applied Mathematics
, Rhodes, Greece, Sept. 21–27, pp.
1067
1070
.
28.
Kartushinsky
,
A.
,
Rudi
,
Y.
,
Hussainov
,
M.
,
Shcheglov
,
I.
,
Tisler
,
S.
,
Krupenski
,
I.
, and
Stock
,
D.
,
2014
, “
RSTM Numerical Simulation of Channel Particulate Flow With Rough Wall
,”
Computational and Numerical Simulation
,
Intech
, London, pp.
41
63
.
29.
Annus
,
I.
, and
Koppel
,
T.
,
2011
, “
Transition to Turbulence in Accelerating Pipe Flow
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071202
.
30.
Annus
,
I.
,
Koppel
,
T.
,
Sarv
,
L.
, and
Ainola
,
L.
,
2013
, “
Development of Accelerating Pipe Flow Starting From Rest
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111204
.
31.
Ariyaratne
,
C.
,
He
,
S.
, and
Vardy
,
A. E.
,
2010
, “
Wall Friction and Turbulence Dynamics in Decelerating Pipe Flows
,”
J. Hydraul. Res.
,
48
(
6
), pp.
810
821
.
32.
Koronaki
,
E. D.
,
Liakos
,
H. H.
,
Founti
,
M. A.
, and
Markatos
,
N. C.
,
2001
, “
Numerical Study of Turbulent Diesel Flow in a Pipe With Sudden Expansion
,”
Appl. Math. Modell.
,
25
(
4
), pp.
319
333
.
33.
Frawley
,
P.
,
O'Mahony
,
A. P.
, and
Geron
,
M.
,
2010
, “
Comparison of Lagrangian and Eulerian Simulations of Slurry Flows in a Sudden Expansion
,”
ASME J. Fluids Eng.
,
132
(
9
), p.
091301
.
You do not currently have access to this content.