Cavitation erosion through water hammer and column separation is a major concern in hydraulic applications such as percussive rock drilling. Cavitation aspects must be considered both in early and late design stages, which require deep knowledge and tools for prediction. In this study, an oil-hydraulic test equipment for water hammer assessment was designed using state-of-the-art simulation tools. Several tests were performed, with and without column separation, showing good repeatability on measured pressures. At higher flow rates, column separation was the dominating feature and several high-pressure peaks with subsequent time delay reduction could be observed. These patterns were affected by the oil temperature, with most substantial changes at lower temperature ranges (<32 °C). Standard transmission line simulations managed to predict the water hammer, but as expected not the column separation, which is the theme of future work using this setup.

References

References
1.
Chaudhry
,
M. H.
,
1979
,
Applied Hydraulic Transients. Report
,
Springer
, New York.
2.
Wylie
,
E. B.
, and
Streeter
,
V. L.
,
1978
,
Fluid Transients
,
McGraw-Hill International Book
,
New York
, p.
401
.
3.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammitt
,
F. G.
,
1970
,
Cavitation
,
McGraw-Hill
, New York.
4.
Arndt
,
R. E.
,
1981
, “
Cavitation in Fluid Machinery and Hydraulic Structures
,”
Annu. Rev. Fluid Mech.
,
13
(
1
), pp.
273
326
.
5.
Li
,
S.
,
2000
,
Cavitation of Hydraulic Machinery
, Vol.
1
,
World Scientific
, Imperial College Press, London.
6.
Koivula
,
T.
,
2000
, “
On Cavitation in Fluid Power
,”
First FPNI-Ph.D. Symposium, Hamburg
, Germany, Sept. 20–22, pp.
371
382
.
7.
Bonin
,
C.
,
1960
, “
Water-Hammer Damage to Oigawa Power Station
,”
ASME J. Eng. Power
,
82
(
2
), pp.
111
119
.
8.
List
,
E.
,
Burnam
,
J.
,
Solbrig
,
R.
, and
Hogatt
,
J.
,
1999
, “
Vapor Cavity Formation and Collapse: Field Evidence for Major Pipeline Damage
,”
Third ASME/JSME Joint Fluids Engineering Conference
, San Francisco, CA, July 18–23, pp.
1
10
.
9.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A. S.
,
2006
, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
,
22
(
2
), pp.
135
171
.
10.
Brennen
,
C. E.
,
2011
, “
An Introduction to Cavitation Fundamentals
,” WIMRC FORUM 2011—Cavitation: Turbomachinery Medical Applications, Coventry, UK, July 4–6.
11.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
, New York.
12.
Adamkowski
,
A.
, and
Lewandowski
,
M.
,
2009
, “
A New Method for Numerical Prediction of Liquid Column Separation Accompanying Hydraulic Transients in Pipelines
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
071302
.
13.
Adamkowski
,
A.
, and
Lewandowski
,
M.
,
2012
, “
Investigation of Hydraulic Transients in a Pipeline With Column Separation
,”
J. Hydraul. Eng.
,
138
(
11
), pp.
935
944
.
14.
Kim
,
K.-H.
,
Chahine
,
G.
,
Franc
,
J.-P.
, and
Karimi
,
A.
,
2014
,
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
, Vol.
106
,
Springer
, New York.
15.
Joukowsky
,
N.
,
1900
,
ÜBer den Hydraulischen Stoss in Wasserleitungsrohren
,
Acadmie Impriale Des Sciences
, St. Petersburg, Russia.
16.
Soares
,
A. K.
,
Covas
,
D. I. C.
, and
Carriço
,
N. J. G.
,
2012
, “
Transient Vaporous Cavitation in Viscoelastic Pipes
,”
J. Hydraul. Res.
,
50
(
2
), pp.
228
235
.
17.
Nikpour
,
M.
,
Nazemi
,
A.
,
Dalir
,
A. H.
,
Shoja
,
F.
, and
Varjavand
,
P.
,
2014
, “
Experimental and Numerical Simulation of Water Hammer
,”
Arabian J. Sci. Eng.
,
39
(
4
), pp.
2669
2675
.
18.
Larsson
,
J.
,
2002
, “User's Guide to Hopsan: An Integrated Simulation Environment,”
Linköping University
, Linköping, Sweden.
19.
Eriksson
,
B.
,
Nordin
,
P.
, and
Krus
,
P.
, 2010, “
Hopsan NG, A C++ Implementation Using the TLM Simulation Technique
,”
Conference on Simulation and Modelling
(
SIMS
), Oulu, Finland Oct. 14–15.https://www.researchgate.net/publication/230688277_Hopsan_NG_A_C_Implementation_using_the_TLM_Simulation_Technique
20.
Krus
,
P.
,
2011
, “
Robust Modelling Using Bi-Lateral Delay Lines for High Speed Simulation of Complex Systems
,”
International Symposium on Dynamic Problems of Mechanics
, São Paulo, Brazil, Mar. 13–18.
21.
Andersson
,
J.
,
Krus
,
P.
,
Nilsson
,
K.
, and
Storck
,
K.
,
1999
, “
Modelling and Simulation of Heat Generation in Electro-Hydrostatic Actuation Systems
,” Forth JHPS International Symposium on Fluid Power, Tokyo, Japan, Nov. 15–17, pp.
537
542
.
22.
Bær
,
K.
,
Ericson
,
L.
, and
Krus
,
P.
,
2013
, “
Modeling of a Series Hybrid Hydraulic Drivetrain for a Light-Duty Vehicle in Hopsan
,”
13th Scandinavian International Conference on Fluid Power
(
SICFP
), Linköping, Sweden, June 3–5, pp.
107
112
.http://www.ep.liu.se/ecp/092/011/ecp13092011.pdf
23.
Fatjo
,
G. G.-A.
,
2016
, “
New Dimensionless Number to Predict Cavitation in Accelerated Fluid
,”
Int. J. Comput. Methods Exp. Meas.
,
4
(
4
), pp.
484
492
.
24.
Shell
,
1967
, “Technical Data on Shell Tellus Oils,” Vol.
1
,
Shell International Petroleum Company Ltd.
, The Hague, The Netherlands.
25.
Shell
,
2015
, “
Shell Tellus S2 V 46 Safety Data Sheet
,” Shell International Petroleum Company Ltd., The Hague, The Netherlands.
26.
Willingham
,
C. B.
,
Taylor
,
W.
,
Pignocco
,
J. M.
, and
Rossini
,
F.
,
1945
, “
Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons
,”
J. Res. Natl. Bur. Stand.
,
35
(
3
), pp.
219
244
.
27.
Kojima
,
E.
,
Shinada
,
M.
, and
Shindo
,
K.
,
1984
, “
Fluid Transient Phenomena Accompanied With Column Separation in Fluid Power Pipeline: 1st Report, on the Horizontal Pipeline Downstream of a Valve Instantaneously Closed
,”
Bull. JSME
,
27
(
233
), pp.
2421
2429
.
You do not currently have access to this content.