In the maritime industry, cavitation erosion prediction becomes more and more critical, as the requirements for more efficient propellers increase. Model testing is yet the most typical way a propeller designer can, nowadays, get an estimation of the erosion risk on the propeller blades. However, cavitation erosion prediction using computational fluid dynamics (CFD) can possibly provide more information than a model test. In the present work, we review erosion risk models that can be used in conjunction with a multiphase unsteady Reynolds‐averaged Navier–Stokes (URANS) solver. Three different approaches have been evaluated, and we conclude that the energy balance approach, where it is assumed that the potential energy contained in a vapor structure is proportional to the volume of the structure, and the pressure difference between the surrounding pressure and the pressure within the structure, provides the best framework for erosion risk assessment. Based on this framework, the model used in this study is tested on the Delft Twist 11 hydrofoil, using a URANS method, and is validated against experimental observations. The predicted impact distribution agrees well with the damage pattern obtained from paint test. The model shows great potential for future use. Nevertheless, it should further be validated against full scale data, followed by an extended investigation on the effect of the driving pressure that leads to the collapse.

References

References
1.
Plesset
,
M. S.
, and
Chapman
,
R. B.
,
1971
, “
Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary
,”
J. Fluid Mech.
,
47
(
2
), pp.
283
290
.
2.
Rayleigh
,
L.
,
1917
, “
VIII. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
34
(
200
), pp.
94
98
.
3.
Hickling
,
R.
, and
Plesset
,
M. S.
,
1964
, “
Collapse and Rebound of a Spherical Bubble in Water
,”
Phys. Fluids
,
7
, pp. 7–14.
4.
Plesset
,
M. S.
, and
Hsieh
,
D.
,
1977
, “
Theory of Gas Bubble Dynamics in Oscillating Pressure Fields
,”
Phys. Fluids
,
3
, pp. 882–892.
5.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Ann. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.
6.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
7.
van Wijngaarden
,
L.
,
1966
,
On the Collective Collapse of a Large Number of Gas Bubbles in Water
,
Netherlands Ship Model Basin
,
Wageningen, The Netherlands
.
8.
Mørch
,
K. A.
,
1982
, “
Energy Considerations on the Collapse of Cavity Clusters
,”
Appl. Sci. Res.
,
38
, p. 313.
9.
Isselin
,
J.-C.
,
Aloncle
,
A.-P.
, and
Autric
,
M.
,
1998
, “
On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena
,”
J. Appl. Phys.
,
84
(
10
), pp.
5766
5771
.
10.
Philipp
,
A.
, and
Lauterborn
,
W.
,
1998
, “
Cavitation Erosion by Single Laser-Produced Bubbles
,”
J. Fluid Mech.
,
361
, pp.
75
116
.
11.
Hammit
,
F. G.
,
1963
, “
Observations on Cavitation Damage in a Flowing System
,”
J. Basic Eng.
,
85
(
3
), pp.
347
356
.
12.
Vogel
,
A.
, and
Lauterborn
,
W.
,
1988
, “
Acoustic Transient Generation by Laser-Produced Cavitation Bubbles Near Solid Boundaries
,”
J. Acoust. Soc. Am.
,
84
(
2
), pp.
719
731
.
13.
Dular
,
M.
,
Stoffel
,
B.
, and
Sirok
,
B.
,
2006
, “
Development of a Cavitation Erosion Model
,”
Wear
,
261
(
5–6
), pp.
642
655
.
14.
Dular
,
M.
,
Pozar
,
T.
,
Zevnik
,
J.
, and
Petkovsek
,
R.
,
2019
, “
High Speed Observation of Damage Created by a Collapse of a Single Cavitation Bubble
,”
Wear
,
418–419
, pp.
13
26
.
15.
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
1998
, “
A New Approach to Evaluate the Cavitation Erosion Power
,”
ASME J. Fluids Eng.
,
120
(
2
), pp.
335
344
.
16.
Fortes-Patella
,
R.
,
Challier
,
G.
,
Reboud
,
J. L.
, and
Archer
,
A.
,
2013
, “
Energy Balance in Cavitation Erosion: From Bubble Collapse to Indentation of Material Surface
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011303
.
17.
Franc
,
J. P.
, and
Michel
,
J. M.
,
2004
,
Fundamentals of Cavitation
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
18.
Tomita
,
Y.
, and
Shima
,
A.
,
1986
, “
Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse
,”
J. Fluid Mech.
,
169
(
1
), pp.
535
564
.
19.
Bark
,
G.
,
Berchiche
,
N.
, and
Grekula
,
M.
,
2004
, “
Application of Principles for Observation and Analysis of Eroding Cavitation
,”
EROCAV Observation Handbook
,
Chalmers University of Technology
,
Gothenburg, Sweeden
.
20.
Tinguely
,
M.
,
Obreschkow
,
D.
,
Kobel
,
P.
,
Dorsaz
,
N.
,
de Bosset
,
A.
, and
Farhat
,
M.
,
2012
, “
Energy Partition at the Collapse of Spherical Cavitation Bubbles
,”
Phys. Rev. E
,
86
(
4 Pt 2
), p.
046315
.
21.
van Terwisga
,
T. J. C.
,
Fitzsimmons
,
P. A.
,
Li
,
Z.
, and
Foeth
,
E. J.
,
2009
, “
Cavitation Erosion—A Review of Physical Mechanism and Erosion Risk Models
,”
Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug. 15–20, Paper No. 41.https://deepblue.lib.umich.edu/bitstream/handle/2027.42/84241/CAV2009-final41.pdf?sequence=1
22.
Eskilsson
,
C.
, and
Bensow
,
R. E.
,
2015
, “
Estimation of Cavitation Erosion Intensity Using CFD: Numerical Comparison of Three Different Methods
,”
Fourth International Symposium on Marine Propulsors
, Austin, TX, Austin, TX, May 31–June 4, pp. 9–17.http://www.marinepropulsors.com/proceedings/2015/MA1-2.pdf
23.
Fortes-Patella
,
R.
,
Reboud
,
J.-L.
, and
Briancon-Marjollet
,
L.
,
2004
, “
A Phenomenological and Numerical Model for Scaling the Flow Agressiveness in Cavitation Erosion
,”
EROCAV Workshop
, Val de Reuil, France, May.https://www.researchgate.net/publication/281921326_A_Phenomenological_and_numerical_model_for_scaling_the_flow_agressiveness_in_cavitation_erosion
24.
Leclercq
,
C.
,
Archer
,
A.
,
Fortes-Patella
,
R.
, and
Cerru
,
F. R. F.
,
2017
, “
Numerical Cavitation Intensity on a Hydrofoil for 3D Homogeneous Unsteady Viscous Flows
,”
Int. J. Fluid Mach. Syst.
,
10
(
3
), pp.
254
263
.
25.
Schenke
,
S.
, and
van Terwisga
,
T. J. C.
,
2018
, “
Erosive Aggressiveness of Collapsing Cavitating Structures
,”
Tenth International Symposium on Cavitation
, Baltimore, MD, May 14–16, Paper No. 69.
26.
Cao
,
Y. T.
,
Peng
,
X. X.
,
Yan
,
K.
,
Xu
,
L. H.
, and
Shu
,
L. W.
,
2017
, “
A Qualitative Study on the Relationship Between Cavitation Structure and Erosion Region Around a 3D Twisted Hydrofoil by Painting Method
,”
Fifth International Symposium on Marine Propulsors
, Espoo, Finland, June 12–15, pp. 1–5.http://www.marinepropulsors.com/proceedings/2017/MA1-1.pdf
27.
Kato
,
H.
,
Konno
,
A.
,
Maeda
,
M.
, and
Yamaguchi
,
H.
,
1996
, “
Possibility of Quantitative Prediction of Cavitation Erosion Without Model Test
,”
ASME J. Fluids Eng.
,
118
(
3
), pp.
582
588
.
28.
Dular
,
M.
, and
Coutier-Delgosha
,
O.
,
2009
, “
Numerical Modelling of Cavitation Erosion
,”
Int. J. Numer. Meth. Fluids
,
61
(
12
), pp.
1388
1410
.
29.
Mihatsch
,
M. S.
,
Schmidt
,
S. J.
,
Thalhamer
,
M.
, and
Adams
,
N. A.
,
2011
, “
Numerical Prediction of Erosive Collapse Events in Unsteady Compressible Cavitating Flows
,”
Fourth International Conference on Computational Methods in Marine Engineering
,
Lisbon, Portugal
,
Sept. 28–30
, pp.
499
509
.
30.
Flageul
,
C.
,
Fortes-Patella
,
R.
, and
Archer
,
A.
,
2012
, “
Cavitation Erosion Prediction by Numerical Simulations
,”
14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Feb. 27–Mar. 2.https://www.researchgate.net/publication/267266082_Cavitation_Erosion_Prediction_by_Numerical_Cavitation
31.
Lush
,
P.
,
1983
, “
Impact of a Liquid Mass on a Perfectly Plastic Solid
,”
J. Fluid Mech.
,
135
(
1
), pp.
373
387
.
32.
Lauer
,
E.
,
Hu
,
X. Y.
,
Hickel
,
S.
, and
Adams
,
N. A.
,
2012
, “
Numerical Modelling and Investigation of Symmetric and Asymmetric Cavitation Bubble Dynamics
,”
Comput. Fluids
,
69
, pp.
1
19
.
33.
Chahine
,
G. L.
,
Franc
,
J.-P.
, and
Karimi
,
A.
, eds.,
2014
, “
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
,”
Cavitation and Cavitation Erosion: Computational and Experimental Approaches
,
1st. ed.
, Vol.
106
,
Springer
,
Dordrecht, The Netherlands
, pp.
3
180
.
34.
Peters
,
A.
,
Sagar
,
H.
,
Lantermann
,
U.
, and
el Moctar
,
O.
,
2015
, “
Numerical Modelling and Prediction of Cavitation Erosion
,”
Wear
,
338–339
, pp.
189
201
.
35.
Schenke
,
S.
, and
van Terwisga
,
T. J. C.
,
2017
, “
Numerical Prediction of Vortex Dynamics in Inviscid Sheet Cavitation
,”
20th Numerical Towing Tank Symposium
,
Wageningen, The Netherlands
,
Oct. 1–3
, pp.
199
201
.
36.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Modeling for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
37.
Melissaris
,
T.
,
Bulten
,
N.
, and
van Terwisga
,
T. J. C.
,
2017
, “
A Numerical Study on the Shedding Frequency of Sheet Cavitation
,”
Seventh International Conference on Computational Methods in Marine Engineering
, Nantes, France, May 15–17, pp. 801–812.https://www.researchgate.net/publication/318562095_A_NUMERICAL_STUDY_ON_THE_SHEDDING_FREQUENCY_OF_SHEET_CAVITATION
38.
Reboud
,
J.-L.
, and
Delannoy
,
Y.
,
1994
, “
Two-Phase Flow Modelling of Unsteady Cavitation
,”
Second International Symposium on Cavitation
,
Tokyo, Japan
,
Apr. 5–7
.
39.
Reboud
,
J.-L.
,
Stutz
,
B.
, and
Coutier
,
O.
,
1998
, “
Two-Phase Flow Structure of Cavitation: Experiment and Modelling of Unsteady Effects
,”
Third International Symposium on Cavitation
, Grenoble, France, Apr. 7–10.https://www.researchgate.net/publication/248179422_Two-phase_flow_structure_of_cavitation_Experiment_and_modeling_of_unsteady_effects
40.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference on Multiphase Flow
, New Orleans, LA, May 27–June 1.https://www.researchgate.net/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics
41.
Schenke
,
S.
, and
van Terwisga
,
T. J. C.
,
2019
, “
An Energy Conservative Method to Predict the Erosive Aggressiveness of Collapsing Cavitating Structures and Cavitating Flows From Numerical Simulations
,”
J. Multiphase Flow
,
111
, pp.
200
218
.
42.
Crepier
,
P.
,
2017
, “
Ship Resistance Prediction: Verification and Validation Exercise on Unstructured Grids
,”
Seventh International Conference on Computational Methods in Marine Engineering, Nantes, France
, May 15–17, pp. 365–376.http://www.refresco.org/wp-content/uploads/2018/03/2017-Marine-Crepier.pdf
43.
Eca
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.
44.
Vaz
,
G.
,
Lloyds
,
T.
, and
Gnanasundaram
,
A.
,
2017
, “
Improved Modelling of Sheet Cavitation Dynamics on Delft Twist11 Hydrofoil
,”
Seventh International Conference on Computational Methods in Marine Engineering, Nantes, France
, May 15–17, pp. 143–156.https://www.researchgate.net/publication/316240688_IMPROVED_MODELLING_OF_SHEET_CAVITATION_DYNAMICS_ON_DELFT_TWIST11_HYDROFOIL
45.
Brouwer
,
J.
,
Tukker
,
J.
, and
van Rijsbergen
,
M.
,
2015
, “
Uncertainty Analysis of Finite Length Signals
,”
Forth International Conference on Advanced Model Measurement Technologies for the Maritime Industry
,
Istanbul, Turkey
,
Sept. 28–30
.
46.
Brouwer
,
J.
,
Tukker
,
J.
, and
van Rijsbergen
,
M.
,
2013
, “
Uncertainty Analysis and Stationarity Test of Finite Length Time Series Signals
,”
Third International Conference on Advanced Model Measurement Technologies for the Maritime Industry
, Gdansk, Poland, Sept. 17–18.https://www.researchgate.net/publication/295694401_Uncertainty_Analysis_and_Stationarity_Test_of_Finite_Length_Time_Series_Signals
47.
Foeth
,
E.-J.
,
2008
, “
The Structure of Three-Dimensional Sheet Cavitation
,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3A61690ddb-1433-4205-954c-85d839dab4cf
48.
Oprea
,
A.
,
2013
, “
Prediction of Tip Vortex Cavitation for Ship Propellers
,”
Ph.D. thesis
, University of Twente, Enschede, The Netherlands.https://research.utwente.nl/en/publications/prediction-of-tip-vortex-cavitation-for-ship-propellers
49.
Muzaferija
,
S.
,
Papoulias
,
D.
, and
Peric
,
M.
,
2017
, “
VOF Simulations of Hydrodynamic Cavitation Using the Asymptotic and Classical Rayleigh-Plesset Models
,”
Fifth International Symposium on Marine Propellers, Espoo, Finland
, June 12–15, pp. 50–57.http://www.marinepropulsors.com/proceedings/2017/MA2-2.pdf
50.
Carrat
,
J.-B.
,
Fortes-Patella
,
R.
, and
Franc
,
J.-P.
,
2017
, “
Assessment of Cavitating Flow Aggressiveness on a Hydrofoil: Experimental and Numerical Approaches
,”
ASME
Paper No. FEDSM2017-69187.
51.
Li
,
Z.
, and
van Terwisga
,
T.
,
2014
, “
Assessment of Cavitation Erosion With a URANS Method
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
041101
.
You do not currently have access to this content.