With heightened concerns on carbon dioxide (CO2) emissions from coal power plants, there has been a major emphasis in recent years on development of safe and economical geological carbon sequestration (GCS) technology. However, the detailed multiphase fluid dynamics and processes of GCS are not fully understood because various CO2 trapping mechanisms in geological formations have large variations in both spatial and temporal scales. As a result, there remain many uncertainties in determining the sequestration capacity of the reservoir and the safety of sequestered CO2 due to leakage. Furthermore, the sequestration efficiency is highly dependent on the CO2 injection strategy, which includes injection rate, injection pressure, and type of injection well, and its orientation, etc. The goal of GCS is to maximize the sequestration capacity and minimize the plume migration by optimizing the GCS operation. In this paper, first the basic fluid dynamics and trapping mechanisms for CO2 sequestration are briefly discussed. They are followed by a brief summary of current GCS projects worldwide with special emphasis on those in the United States. Majority of the paper is devoted to the numerical modeling, simulation, and optimization of CO2 sequestration in saline aquifers at macro spatial scales of a few to hundreds of kilometers and macro temporal scales of a few to hundreds of years. Examples of numerical simulations of a few large industrial scale projects are presented. The optimization studies include the investigation of various injection and well placement strategies to determine the optimal approach for maximizing the storage and minimizing the plume migration.

References

References
1.
International Energy Outlook,
2010
, “
U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting
,” U.S. Department of Energy, Washington, DC.
2.
IPCC
,
2005
,
IPCC Special Report on Carbon Dioxide Capture and Storage
,
Cambridge University Press
, New York.
3.
Pruess
,
K.
,
1999
, “
TOUGH2: A General Numerical Simulator for Multiphase Fluid and Heat Flow
,” Lawrence Berkeley Laboratory, Berkeley, CA, Report No. LBL-29400.
4.
Pruess
,
K.
,
Oldenburg
,
C.
, and
Moridis
,
G.
,
2011
, “
TOUGH2 User's Guide, Version 2.0 (Revised)
,” Lawrence Berkeley National Laboratory, Berkeley, CA, Report No. LBNL-43134.
5.
Xu
,
T.
,
Sonnenthal
,
E.
,
Spyer
,
N.
, and
Pruess
,
K.
,
2004
, “
TOUGHREACT User's Guide: A Simulation Program for Nonisothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media
,” Lawrence Berkeley National Laboratory, Berkeley, CA, Report No. LBNL-55460.
6.
Moridis
,
G.
,
Kowalsky
,
M.
, and
Pruess
,
K.
,
2008
, “
TOUGH+HYDRATE v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate Bearing Geological Media
,” Lawrence Berkeley Laboratory, Berkeley, CA, Report No. LBNL-149 E.
7.
National Mining Association
,
2012
, “
Fact Sheet on Carbon Capture and Storage
,” National Mining Association, Washington, DC, Mar. 20, 2012, http://www.nma.org/pdf/fact_sheets/ccs.pdf
8.
Herzog
,
H.
, and
Golomb
,
D.
,
2004
, “
Carbon Capture and Storage From Fossil Fuel Use
,”
Encycl. Energy
,
1
, pp.
277
287
.https://sequestration.mit.edu/pdf/enclyclopedia_of_energy_article.pdf
9.
Johnson
,
J.
,
Nitao
,
J.
, and
Knauss
,
K.
,
2004
, “
Reactive Transport Modelling of CO2 Storage in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms, and Sequestration Partitioning
,”
Geological Society of London Special Publication on Carbon Sequestration Technologies
, Geological Society of London, London.
10.
U.S. DOE
,
2008
, “
Carbon Sequestration ATLAS of the United States and Canada
,” U.S. Department of Energy, Office of Fossil Energy, Washington, DC.
11.
Celia
,
M.
, and
Nordbotten
,
J.
,
2009
, “
Practical Modeling Approaches for Geological Storage of Carbon Dioxide
,”
Underground Water
,
47
(
5
), pp.
627
638
.
12.
Celia
,
M.
, and
Nordbotten
,
J.
,
2011
, “
How Simple Can We Make Models for CO2 Injection, Migration, and Leakage?
,”
Energy Procedia
,
4
, pp.
3857
3864
.
13.
Class
,
H.
,
Ebigbo
,
A.
,
Helmig
,
R.
,
Dahle
,
H. K.
,
Nordbotten
,
J. M.
,
Celia
,
M. A.
,
Audigane
,
P.
,
Darcis
,
M.
,
Ennis-King
,
J.
,
Fan
,
Y.
,
Flemisch
,
B.
,
Gasda
,
S. E.
,
Jin
,
M.
,
Krug
,
S.
,
Labregere
,
D.
,
Naderi Beni
,
A.
,
Pawar
,
R. J.
,
Sbai
,
A.
,
Thomas
,
S. G.
,
Trenty
,
L.
, and
Wei
,
L.
,
2009
, “
A Benchmark Study on Problems Related to CO2 Storage in Geologic Formations
,”
Comput. Geosci.
,
13
(
4
), pp.
409
434
.
14.
Zhang
,
Z.
,
2013
, “
Numerical Simulation and Optimization of CO2 Sequestration in Saline Aquifers
,” Ph.D. dissertation, Washington University in St. Louis, St. Louis, MO.
15.
Goldberg
,
D.
,
1989
,
Genetic Algorithms in Search, Optimization & Machine Learning
,
Addison-Wesley
, Boston, MA.
16.
Zhang
,
Z.
, and
Agarwal
,
R.
,
2012
, “
Numerical Simulation and Optimization of CO2 Sequestration in Saline Aquifers
,”
Comput. Fluids
,
16
(
4
), pp.
891
899
.
17.
Leetaru
,
H.
,
Frailey
,
S.
,
Damico
,
J.
,
Finley
,
R.
,
McBride
,
J.
, and
Morse
,
D.
,
2008
, “
Developing a Geological Model for the Phase III (ADM) Saline Sequestration Validation Site
,”
Seventh Annual Conference on Carbon Capture and Sequestration
,
Pittsburgh, PA
,
May 5–8
.
18.
Barnes
,
D.
,
Bacon
,
D.
, and
Kelley
,
S.
,
2009
, “
Geological Sequestration of Carbon Dioxide in the Cambrian Mount Simon Sandstone: Regional Storage Capacity, Site Characterization, and Large Scale Injection Feasibility, Michigan Basin
,”
Environ. Geosci.
,
16
(
3
), pp.
163
183
.
19.
Ball
,
D.
,
2011
, “
Midwest Regional Carbon Sequestration Partnership, CO2 Injection Test in the Cambrian-Age Mt. Simon Formation
,” Battelle, Columbus, OH.
20.
Zhou
,
Q.
,
Birkholzer
,
J.
,
Mehnert
,
E.
,
Lin
,
Y.
, and
Zhang
,
K.
,
2009
, “
Modeling Basin- and Plume-Scale Processes of CO2 Storage for Full-Scale Deployment
,”
Ground Water
,
48
(
4
), pp.
494
514
.
21.
Audigane
,
P.
,
Gaus
,
I.
,
Czernichowski-Lauriol
,
I.
,
Pruess
,
K.
, and
Xu
,
T.
,
2007
, “
Two-Dimensional Reactive Transport Modeling of CO2 Injection in a Saline Aquifer at the Sleipner Site
,”
Am. J. Sci.
,
307
(
7
), pp.
974
1008
.
22.
Chadwick
,
R.
, and
Noy
,
D.
,
2010
, “
History-Matching Flow Simulations and Time-Lapse Seismic Data From the Sleipner CO2 Plume
,”
Seventh Petroleum Geology Conference
,
London
, pp.
1171
1182
.
23.
Singh
,
V.
,
Cavanagh
,
A.
,
Hansen
,
H.
,
Nazarian
,
B.
,
Iding
,
M.
, and
Ringrose
,
P.
,
2010
, “
Reservoir Modeling of CO2 Plume Behavior Calibrated Against Monitoring Data From Sleipner, Norway
,” Society of Petroleum Engineers, Florence, Italy, Sept. 19–22, SPE Paper No.
SPE-134891-MS
.
24.
Zhu
,
C.
, and
Lu
,
P.
,
2012
,
Personal Communication
,
Department of Geological Sciences, University of Indiana, Bloomington, IN
.
25.
Orr
,
L.
,
2010
, “
Carbon Capture and Sequestration: Where Do We Stand?
,” Presentation at NAE/AAES Convocation, Washington, DC, Apr. 19.
26.
Bryant
,
S.
,
Lakshminarasimhan
,
S.
, and
Pope
,
G.
,
2008
, “
Buoyancy-Dominated Multi-Phase Flow and Its Effect on Geological Sequestration of CO2
,”
SPE J.
,
13
(
4
), pp.
447
454
.
27.
Leonenko
,
Y.
, and
Keith
,
D.
,
2008
, “
Reservoir Engineering to Accelerate the Dissolution of CO2 Stored in Aquifers
,”
Environ. Sci. Technol.
,
42
, pp.
2742
2747
.
28.
Hassanzadeh
,
H.
,
Pooladi-Darvish
,
M.
, and
Keith
,
D.
,
2009
, “
Accelerating CO2 Dissolution in Saline Aquifers for Geological Storage—Mechanistic and Sensitivity Studies
,”
Energy Fuels
,
23
(
6
), pp.
3328
3336
.
29.
Jikich
,
S.
,
Sams
,
W.
,
Bromhal
,
G.
,
Pope
,
G.
,
Gupta
,
N.
, and
Smith
,
D.
,
2003
, “
Carbon Dioxide Injectivity in Brine Reservoirs Using Horizontal Wells
,”
Second Annual Conference on Carbon Sequestration
,
Pittsburgh, PA
,
May 5–9
.
30.
Nasir
,
F.
, and
Chong
,
Y.
,
2009
, “
The Effect of Different Carbon Dioxide Injection Modes on Oil Recovery
,”
Int. J. Eng. Technol.
,
9
(
10
), pp.
66
72
.https://pdfs.semanticscholar.org/5caa/f48a3637298abf6a87b1121ae78c23838bc6.pdf
31.
Farin
,
G.
,
1996
,
Curves and Surfaces for Computer-Aided Geometric Design
,
4th ed.
,
Academic Press
,
Waltham, MA
.
32.
Burton
,
M.
,
Kumar
,
N.
, and
Bryant
,
S.
,
2009
, “
CO2 Injectivity Into Brine Aquifers: Why Relative Permeability Matters as Much as Absolute Permeability
,”
Energy Procedia
,
1
(
1
), pp.
3091
3098
.
33.
Eccles
,
J.
,
Chandel
,
M.
, and
Pratson
,
L.
,
2011
, “
Large Scale Carbon Storage Deployment: Effects of Well Spacing on Geosequestration Site Costs and Capacity Estimates
,”
Tenth Annual Conference on Carbon Capture & Sequestration
,
Pittsburgh, PA
,
May 2–5
.
34.
Pooladi-Darvish
,
M.
,
Moghdam
,
S.
, and
Xu
,
D.
,
2011
, “
Multi-Well Injectivity for Storage of CO2 in Aquifers
,”
Energy Procedia
,
4
, pp.
4252
4259
.
You do not currently have access to this content.