The physical mechanism for the evolution and decay of Lamb–Oseen vortex pair in ground proximity with an obstacle has been investigated in detail by adopting the large eddy simulation (LES). In the present research, we mainly focus on the vortex evolution and decay mechanism in ground proximity with obstacle, so we chose one fixed height of the obstacle case (h0 = 0.5b0) to investigate, and the obstacle is placed transversally to the axis of the primary wake to be analyzed. The trajectories of the primary wake-vortex cores and the circulation profiles, as well as the distribution of the tangential velocity on different axial positions, have been specifically captured and analyzed. The “strake,” “claw,” and “ivory” vortices have been newly found and defined at the initial evolution stage, and they subsequently begin to harshly wind and rotate with the primary vortex. A flow structure with double helix conical shapes of the primary vortex has been found in the obstacle case. The pressure waves along the vortex axis have also been analyzed in detail. The wake-vortex on each side would be pulled in opposite axial directions and eventually pinched off at the upper surface of obstacle. Moreover, it has also been newly found that the trajectories of the wake-vortex in longitudinal directions at different axial distances away from the obstacle will experience two kinds of motion: only descending and rebounding after descending. Results obtained in this study provide a better understanding of mechanisms for the interaction of wake-vortex and the obstacle.

References

References
1.
Leweke
,
T.
,
Le Dizès
,
S.
, and
Williamson
,
C.
,
2016
, “
Dynamics and Instabilities of Vortex Pairs
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
1
35
.
2.
Lamb
,
H.
,
1957
,
Hydrodynamics
,
Cambridge University Press
,
Cambridge, UK
.
3.
Saffman
,
P. G.
,
1979
, “
The Approach of a Vortex Pair to a Plane Surface in Inviscid Fluid
,”
J. Fluid Mech.
,
92
(
3
), pp.
497
503
.
4.
Harvey
,
J.
, and
Perry
,
F.
,
1971
, “
Flowfield Produced by Trailing Vortices in Vicinity of Ground
,”
AIAA J.
,
9
(
8
), pp.
1659
1660
.
5.
Orlandi
,
P.
,
1990
, “
Vortex Dipole Rebound From a Wall
,”
Phys. Fluids A
,
2
(
8
), pp.
1429
1436
.
6.
Proctor
,
F. H.
,
Hamilton
,
D. W.
, and
Han
,
J.
,
2000
, “
Wake Vortex Transport and Decay in Ground Effect: Vortex Linking With the Ground
,”
AIAA
Paper No. 2000-0757.
7.
Cottin
,
C.
,
Desenfans
,
O.
,
Daeninck
,
G.
, and
Winckelmans
,
G.
,
2005
, “
Towing-Tank Visualizations of Two-Vortex Systems in Ground Effect
,” Munich, Germany, Report No. AST4-CT-2005-012238.
8.
Gerz
,
T.
,
Holzäpfel
,
F.
, and
Darracq
,
D.
,
2002
, “
Commercial Aircraft Wake Vortices
,”
Prog. Aerosp. Sci.
,
38
(
3
), pp.
181
208
.
9.
Holzäpfel
,
F.
, and
Steen
,
M.
,
2007
, “
Aircraft Wake-Vortex Evolution in Ground Proximity: Analysis and Parameterization
,”
AIAA J.
,
45
(
1
), pp.
218
227
.
10.
Holzäpfel
,
F. N.
,
Stephan
,
A.
, and
Tchipev
,
N.
,
2014
, “
Impact of Wind and Obstacles on Wake Vortex Evolution in Ground Proximity
,”
AIAA
Paper No. 2014-2470.
11.
Holzäpfel
,
F. N.
,
Stephan
,
A.
, and
Misaka
,
T.
,
2014
, “
Wake Vortex Evolution During Approach and Landing With and Without Plate Lines
,”
AIAA
Paper No. 2014-0925.
12.
Stephan
,
A.
,
Holzäpfel
,
F.
, and
Misaka
,
T.
,
2013
, “
Aircraft Wake-Vortex Decay in Ground Proximity Physical Mechanisms and Artificial Enhancement
,”
J. Aircr.
,
50
(
4
), pp.
1250
1260
.
13.
Bricteux
,
L.
,
Duponcheel
,
M.
,
Visscher
,
I. D.
, and
Winckelmans
,
I. G.
,
2016
, “
LES Investigation of the Transport and Decay of Various-Strengths Wake Vortices in Ground Effect and Subjected to a Turbulent Crosswind
,”
Phys. Fluids
,
28
(
6
), pp.
1
24
.
14.
Meneveau
,
C.
,
Lund
,
T. S.
, and
Cabot
,
W. H.
,
1996
, “
A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,”
J. Fluid Mech.
,
319
(
1
), pp.
353
385
.
15.
Pierce
,
C.
, and
Moin
,
P.
,
1998
, “
Large Eddy Simulation of a Confined Coaxial Jet With Swirl and Heat Release
,”
AIAA
Paper No. 98-2892.
16.
Schlüter
,
J.
,
Pitsch
,
H.
, and
Moin
,
P.
,
2004
, “
Large Eddy Simulation Inflow Conditions for Coupling With Reynolds-Averaged Flow Solvers
,”
AIAA J.
,
42
(
3
), pp.
478
484
.
17.
Zhang
,
G.
,
Schlüter
,
J.
, and
Hu
,
X.
,
2018
, “
Parametric Investigation of Drag Reduction for Marine Vessels Using Air-Filled Dimpled Surfaces
,”
Ships Offshore Struct.
,
13
(3), pp. 244–255.
18.
Pierce
,
C.
,
2001
, “
Progress-Variable Approach for Large-Eddy Simulation of Turbulent Combustion
,”
Ph.D. dissertation
, Stanford University, Stanford, CA.https://web.stanford.edu/group/ctr/pdf/charles_pierce_thesis.pdf
19.
Akselvoll
,
K.
, and
Moin
,
P.
,
1996
, “
Large-Eddy Simulation of Turbulent Confined Coannular Jets
,”
J. Fluid Mech.
,
315
(
1
), pp.
387
411
.
20.
Smirnov
,
N. N.
,
Betelin
,
V. B.
,
Nikitin
,
V. F.
,
Stamov
,
L. I.
, and
Altoukhov
,
D. I.
,
2015
, “
Accumulation of Errors in Numerical of Chemically Reacting Gas Dynamics
,”
Acta Astronaut.
,
117
, pp.
338
355
.
21.
Smirnov
,
N. N.
,
Betelin
,
V. B.
,
Shagaliev
,
R. M.
,
Nikitin
,
V. F.
,
Belyakov
,
I. M.
,
Deryuguin. Yu
,
N.
,
Aksenov
,
S. V.
, and
Korchazhkin
,
D. A.
,
2014
, “
Hydrogen Fuel Rocket Engines Simulation Using LOGOS Code
,”
Int. J. Hydrogen Energy
,
39
(
20
), pp.
10748
10756
.
22.
Zhang
,
G. Q.
,
Ji
,
L. C.
, and
Hu
,
X.
,
2017
, “
Vortex-Induced Vibration for an Isolated Circular Cylinder Under the Wake Interference of an Oscillating Airfoil—Part II: Single Degree of Freedom
,”
Acta Astronaut.
,
133
, pp.
311
323
.
23.
Xia
,
C.
,
Shan
,
X.
, and
Yang
,
Z.
,
2017
, “
Detached-Eddy Simulation of Ground Effect on the Wake of a High-Speed Train
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
05110
.
24.
Visscher
,
I.
,
Bricteux
,
L.
, and
Winckelmans
,
G.
,
2013
, “
Aircraft Vortices in Stably Stratified and Weakly Turbulent Atmospheres: Simulation and Modeling
,”
AIAA J.
,
51
(
3
), pp.
551
566
.
25.
Harris
,
D. M.
, and
Williamson
,
C. H. K.
,
2012
, “
Instability of Secondary Vortices Generated by a Vortex Pair in Ground Effect
,”
J. Fluid Mech.
,
700
, pp.
148
186
.
26.
Misaka
,
T.
,
Holzäpfel
,
F.
, and
Gerz
,
T.
,
2015
, “
Large-Eddy Simulation of Aircraft Wake Evolution From Roll-Up Until Vortex Decay
,”
AIAA J.
,
53
(
9
), pp.
2646
2670
.
27.
Stephan
,
A.
,
Holzäpfel
,
F.
, and
Misaka
,
T.
,
2014
, “
Hybrid Simulation of Wake-Vortex Evolution During Landing on Flat Terrain and With Plate Line
,”
Int. J. Heat Fluid Flow
,
49
, pp.
18
27
.
28.
Moet
,
H.
,
Laporte
,
F.
,
Chevalier
,
G.
, and
Poinsot
,
T.
,
2005
, “
Wave Propagation in Vortices and Vortex Bursting
,”
Phys. Fluids
,
17
(
5
), pp.
1
16
.
29.
Folz
,
P.
, and
Nomura
,
K.
,
2017
, “
A Quantitative Assessment of Viscous Asymmetric Vortex Pair Interactions
,”
J. Fluid Mech.
,
829
, pp.
1
30
.
You do not currently have access to this content.