Supersonic jets at design Mach number of 1.45 issuing from circular 30 deg and 60 deg double-beveled nozzles have been investigated experimentally and numerically in the present study, with a view to potentially improve mixing behavior. Reynolds-averaged Navier–Stokes (RANS) simulations of the double-beveled nozzles and a benchmark nonbeveled nozzle were performed at nozzle-pressure-ratios (NPR) between 2.8 and 5.0, and the results are observed to agree well with Schlieren visualizations obtained from a modified Z-type Schlieren system. Double-beveled nozzles are observed to produce shorter potential core lengths, modifications to the first shock cell lengths that are sensitive toward the NPR and jet half-widths that are typically wider and narrower along the trough-to-trough (TT) and peak-to-peak (PP) planes, respectively. Lastly, using double-beveled nozzles leads to significant mass flux ratios at NPR of 5.0, with a larger bevel-angle demonstrating higher entrainment levels.

References

References
1.
Tam
,
C. K.
,
1995
, “
Supersonic Jet Noise
,”
Annu. Rev. Fluid Mech.
,
27
(
1
), pp.
17
43
.
2.
Raman
,
G.
,
1999
, “
Supersonic Jet Screech: Half-Century From Powell to the Present
,”
J. Sound Vib.
,
225
(
3
), pp.
543
571
.
3.
Seiner
,
J.
, and
Norum
,
T.
,
1980
, “
Aerodynamic Aspects of Shock Containing Jet Plumes
,”
AIAA
Paper No. 1980-965
4.
Phanindra
,
B. C.
, and
Rathakrishnan
,
E.
,
2010
, “
Corrugated Tabs for Supersonic Jet Control
,”
AIAA J.
,
48
(
2
), pp.
453
465
.
5.
Ho
,
C.-M.
, and
Gutmark
,
E.
,
1987
, “
Vortex Induction and Mass Entrainment in a Small-Aspect-Ratio Elliptic Jet
,”
J. Fluid Mech.
,
179
(
1
), pp.
383
405
.
6.
Hussain
,
F.
, and
Husain
,
H. S.
,
1989
, “
Elliptic Jets—Part 1: Characteristics of Unexcited and Excited Jets
,”
J. Fluid Mech.
,
208
(
1
), pp.
257
320
.
7.
Husain
,
H. S.
, and
Hussain
,
F.
,
1991
, “
Elliptic Jets—Part 2: Dynamics of Coherent Structures: Pairing
,”
J. Fluid Mech.
,
233
(
1
), pp.
439
482
.
8.
Wlezien
,
R. W.
, and
Kibens
,
V.
,
1988
, “
Influence of Nozzle Asymmetry on Supersonic Jets
,”
AIAA J.
,
26
(
1
), pp.
27
33
.
9.
Longmire
,
E. K.
,
Eaton
,
J. K.
, and
Elkins
,
C. J.
,
1992
, “
Control of Jet Structure by Crown-Shaped Nozzles
,”
AIAA J.
,
30
(
2
), pp.
505
512
.
10.
New
,
T.
, and
Tsovolos
,
D.
,
2009
, “
Influence of Nozzle Sharpness on the Flow Fields of V-Notched Nozzle Jets
,”
Phys. Fluids
,
21
(
8
), p.
084107
.
11.
Shi
,
S.
, and
New
,
T.
,
2013
, “
Some Observations in the Vortex-Turning Behaviour of Noncircular Inclined Jets
,”
Exp. Fluids
,
54
(
11
), p.
1614
.
12.
Zaman
,
K.
,
1999
, “
Spreading Characteristics of Compressible Jets From Nozzles of Various Geometries
,”
J. Fluid Mech.
,
383
, pp.
197
228
.
13.
Gutmark
,
E.
,
Schadow
,
K.
, and
Yu
,
K.
,
1995
, “
Mixing Enhancement in Supersonic Free Shear Flows
,”
Annu. Rev. Fluid Mech.
,
27
(
1
), pp.
375
417
.
14.
Reddy
,
D. R.
,
Steffen
,
C. J.
, and
Zaman
,
K. B.
,
1997,
Computation of 3-D Compressible Flow From a Rectangular Nozzle With Delta Tabs
,”
ASME
Paper No. 97-GT-257.
15.
Steffen, C. J.
,
Reddy, D. R.
, and
Zaman, K. B. M. Q.
, 1997, “
Numerical Modeling of Jet Entrainment for Nozzles Fitted with Delta Tabs
,”
AIAA
Paper No. 97-0709.
16.
Samimy
,
M.
,
Kim
,
J.-H.
,
Clancy
,
P.
,
Samimy
,
M.
, and
Kim
,
J.-H.
,
1997
, “
Mixing Enhancement in Supersonic Jets Via Nozzle Trailing Edge Modifications
,”
Fourth Shear Flow Control Conference
, Snowmass Village, CO, June 29–July 2, p.
1877
.
17.
Raman
,
G.
,
1997
, “
Screech Tones From Rectangular Jets With Spanwise Oblique Shock-Cell Structures
,”
J. Fluid Mech.
,
330
, pp.
141
168
.
18.
Kim
,
J.-H.
, and
Samimy
,
M.
,
1999
, “
Mixing Enhancement Via Nozzle Trailing Edge Modifications in a High Speed Rectangular Jet
,”
Phys. Fluids
,
11
(
9
), pp.
2731
2742
.
19.
Wu
,
J.
, and
New
,
T. H.
,
2017
, “
An Investigation on Supersonic Bevelled Nozzle Jets
,”
Aerosp. Sci. Technol.
,
63
, pp.
278
293
.
20.
Viswanathan
,
K.
,
Shur
,
M.
,
Spalart
,
P.
, and
Strelets
,
M.
,
2008
, “
Flow and Noise Predictions for Single and Dual-Stream Beveled Nozzles
,”
AIAA J.
,
46
(
3
), pp.
601
626
.
21.
Rice
,
E.
, and
Raman
,
G.
,
1993
, “
Mixing Noise Reduction for Rectangular Supersonic Jets by Nozzle Shaping and Induced Screech Mixing
,”
AIAA
Paper No. 93-4322.
22.
Rao
,
S. M.
,
Asano
,
S.
, and
Saito
,
T.
,
2016
, “
Comparative Studies on Supersonic Free Jets From Nozzles of Complex Geometry
,”
Appl. Therm. Eng.
,
99
, pp.
599
612
.
23.
McLaughlin
,
D. K.
,
Bridges
,
J.
, and
Kuo
,
C.-W.
,
2010
, “
On the Scaling of Small, Heat Simulated Jet Noise Measurements to Moderate Size Exhaust Jets
,”
Int. J. Aeroacoust.
,
9
(
4–5
), pp.
627
654
.
24.
CFX-Solver
,
A.
,
2006
, “
Theory Guide, Release ll
,” ANSYS Inc., Canonsburg, PA.
25.
Aswin
,
G.
, and
Chakraborty
,
D.
,
2010
, “
Numerical Simulation of Transverse Side Jet Interaction With Supersonic Free Stream
,”
Aerosp. Sci. Technol.
,
14
(
5
), pp.
295
301
.
26.
Menter, F. R.
,
Kuntz, M.
, and
Langtry, R.
, 2003, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer 4
, K. Hanjalic, Y. Nagano, and M. Tummers, eds., Begell House, New York, pp. 625–632.
27.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid D
,
23
(
4
), pp.
305
316
.
28.
Vuorinen
,
V.
,
Yu
,
J.
,
Tirunagari
,
S.
,
Kaario
,
O.
,
Larmi
,
M.
,
Duwig
,
C.
, and
Boersma
,
B.
,
2013
, “
Large-Eddy Simulation of Highly Underexpanded Transient Gas Jets
,”
Phys. Fluids
,
25
(
1
), p.
016101
.
29.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
,
Springer Science & Business Media
, Berlin.
You do not currently have access to this content.