In this study, a theoretical analysis is performed to assess the interaction of freestream disturbances with a plane normal shock considering real gas effects. Such effects are important in a field with high velocities and high temperatures. To perform the theoretical analysis, the downstream disturbances field is expressed as a mathematical function of the upstream one by incorporating real gas effects in the formulation. Here, the linearized one-dimensional perturbed unsteady Euler equations are used for the classification of the downstream/upstream disturbances field and the linearized one-dimensional perturbed Rankine–Hugoniot equations are applied to provide a relationship between the disturbances field of two sides of the shock. To incorporate real gas effects in the formulation, real gas relations and equilibrium air curve-fits are used in the resulting system of equations. The general formulation presented here may be simplified to derive Morkovin's formulation by the perfect gas assumption. The magnitudes of downstream disturbances field resulting from different types of upstream disturbances field (entropy wave and fast/slow acoustic waves) with the shock are expressed by appropriate analytical relations. Results for different disturbance variables are presented for a wide range of upstream Mach number considering real gas effects and compared with those of the perfect gas and some conclusions are made. The effects of the presence of body are also studied theoretically and the analytical relations for the magnitude of the pressure disturbance at the body for different types of upstream disturbances field considering real gas effects are provided and their results are presented and discussed.

References

1.
Kovasznay
,
L.
,
1953
, “
Turbulence in Supersonic Flow
,”
J. Aero. Sci.
,
20
(
10
), pp.
657
674
.
2.
Ribner
,
H.
,
1954
, “
Convection of a Pattern of Vorticity Through a Shock Wave
,” National Advisory Committee for Aeronautics, Cleveland, OH, Technical Report No.
1164
.https://ntrs.nasa.gov/search.jsp?R=19930092192
3.
Ribner
,
H.
,
1955
, “
Shock-Turbulence Interaction and the Generation of Noise
,” National Advisory Committee for Aeronautics, Cleveland, OH, Technical Report No.
1233
.https://ntrs.nasa.gov/search.jsp?R=19930090990
4.
Moore
,
F. T.
,
1954
, “
Unsteady Oblique Interaction of a Shock Wave With a Plane Disturbance
,” National Advisory Committee for Aeronautics, Cleveland, OH, Technical Report No.
1165
.https://ntrs.nasa.gov/search.jsp?R=19930092193
5.
Kerrebrock
,
J.
,
1956
, “
The Interaction of Flow Discontinuities With Small Disturbances in a Compressible Fluid
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.http://resolver.caltech.edu/CaltechETD:etd-04142004-150412
6.
Morkovin
,
M.
,
1960
, “
Note on the Assessment of Flow Disturbances at a Blunt Body Traveling at Supersonic Speeds Owing to Flow Disturbances in Free Stream
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
223
229
.
7.
McKenzie
,
J.
, and
Westphal
,
K.
,
1968
, “
Interaction of Linear Waves With Oblique Shock Waves
,”
Phys. Fluids
,
11
(
11
), pp.
2350
2362
.
8.
Goldstein
,
M.
,
1979
, “
Turbulence Generated by the Interaction of Entropy Fluctuations With Non-Uniform Mean Flows
,”
J. Fluid Mech.
,
93
(
2
), pp.
209
224
.
9.
Mahesh
,
K.
,
Lee
,
S.
,
Lele
,
S.
, and
Moin
,
P.
,
1995
, “
The Interaction of an Isotropic Field of Acoustic Waves With a Shock Wave
,”
J. Fluid Mech.
,
300
(
1
), pp.
383
407
.
10.
Mahesh
,
K.
,
Lele
,
S.
, and
Moin
,
P.
,
1996
, “
The Interaction of a Shock Wave With a Turbulent Shear Flow
,” Thermosciences Division, Mechanical Engineering Department, Stanford University, Stanford, CA, Technical Report No. 69.
11.
Mahesh
,
K.
,
Lele
,
S.
, and
Moin
,
P.
,
1997
, “
The Influence of Entropy Fluctuations on the Interaction of Turbulence With a Shock Wave
,”
J. Fluid Mech.
,
334
(
1
), pp.
353
379
.
12.
Fabre
,
D.
,
Jacquin
,
L.
, and
Sesterhenn
,
J.
,
2001
, “
Linear Interaction of a Cylindrical Entropy Spot With a Shock
,”
Phys. Fluids
,
13
(
8
), pp.
2403
2422
.
13.
Chang
,
C.
,
1957
, “
Interaction of a Plane Shock and Oblique Plane Disturbances With Special Reference to Entropy Waves
,”
J. Aeronaut. Sci.
,
24
(9), pp. 675–682.
14.
Andreopoulos
,
Y.
,
Agui
,
J. H.
, and
Briassulis
,
G.
,
2000
, “
Shock Wave-Turbulence Interactions
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
309
345
.
15.
Chiu
,
C.
, and
Zhong
,
X.
,
1996
, “
Numerical Simulation of Transient Hypersonic Flow Using the Essentially Nonoscillatory Schemes
,”
AIAA J.
,
34
(
4
), pp.
655
661
.
16.
Lee
,
S.
,
Lele
,
S.
, and
Moin
,
P.
,
1997
, “
Interaction of Isotropic Turbulence With Shock Waves: Effect of Shock Strength
,”
J. Fluid Mech.
,
340
, pp.
225
247
.
17.
Larsson
,
J.
, and
Lele
,
S.
,
2009
, “
Direct Numerical Simulation of Canonical Shock-Turbulence Interaction
,”
Phys. Fluids
,
21
(
12
), p.
126101
.
18.
Rawat
,
P.
, and
Zhong
,
X.
,
2010
, “
On High-Order Shock-Fitting and Front-Tracking Schemes for Numerical Simulation of Shock-Disturbance Interactions
,”
J. Comput. Phys.
,
229
(
19
), pp.
6744
6780
.
19.
Larsson
,
J.
,
Bermejo-Moreno
,
I.
, and
Lele
,
S.
,
2013
, “
Reynolds and Mach Number Effects in Canonical Shock-Turbulence Interaction
,”
J. Fluid Mech.
,
717
, pp.
293
321
.
20.
Ryu
,
J.
, and
Livescu
,
D.
,
2014
, “
Turbulence Structure behind the Shock in Canonical Shock-Vortical Turbulence Interaction
,”
J. Fluid Mech.
,
756
, R1.
21.
Najafi
,
M.
,
Hejranfar
,
K.
, and
Esfahanian
,
V.
,
2013
, “
Application of a Shock-Fitted Spectral Collocation Method for Computing Transient High-Speed Inviscid Flows Over a Blunt Nose
,”
J. Comput. Phys.
,
257
, pp.
954
980
.
22.
Tian
,
Y.
,
Jaberi
,
F.
,
Li
,
Z.
, and
Livescu
,
D.
,
2017
, “
Numerical Study of Variable Density Turbulence Interaction With a Normal Shock Wave
,”
J. Fluid Mech.
,
829
, pp.
551
588
.
23.
Zhong
,
X.
, and
Joubert
,
X.
,
1995
, “
Bow-Shock/Disturbance Interaction for Hypersonic Flow Over a Cylinder
,”
20th International Symposium on Shock Waves, Pasadena, CA
, pp. 1–6.
24.
Erlebacher
,
G.
,
Hussaini
,
M.
, and
Shu
,
C.
,
1997
, “
Interaction of a Shock With a Longitudinal Vortex
,”
J. Fluid Mech.
,
337
, pp.
129
153
.
25.
Zhong
,
X.
,
1998
, “
High-Order Finite Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition
,”
J. Comput. Phys.
,
144
(
2
), pp.
662
709
.
26.
Pirozzoli
,
S.
,
2002
, “
Conservative Hybrid Compact-Weno Schemes for Shock-Turbulence Interaction
,”
J. Comput. Phys.
,
178
(
1
), pp.
81
117
.
27.
Zhong
,
X.
, and
Tatineni
,
M.
,
2003
, “
High-Order Non-Uniform Grid Schemes for Numerical Simulation of Hypersonic Boundary-Layer Stability and Transition
,”
J. Comput. Phys.
,
190
(
2
), pp.
419
458
.
28.
Johnsen
,
E.
,
Larsson
,
J.
,
Bhagatwala
,
A.
,
Cabot
,
W.
,
Moin
,
P.
,
Olson
,
B.
,
Rawat
,
P.
,
Shankar
,
S.
,
Sjogreen
,
B.
,
Yee
,
H.
, and
Zhong
,
X.
,
2010
, “
Assessment of High-Resolution Methods for Numerical Simulations of Compressible Turbulence With Shock Waves
,”
J. Comput. Phys.
,
229
(
4
), pp.
1213
1237
.
29.
Zhong
,
X.
, and
Lee
,
T.
,
1996
, “
Nonequilibrium Real Gas Effects on Disturbance-Bow Shock Interaction in Hypersonic Flow past a Cylinder
,”
AIAA
Paper No. 96-1856.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.1159&rep=rep1&type=pdf
30.
Ma
,
Y.
, and
Zhong
,
X.
,
2000
, “
Direct Numerical Simulation of Instability of Nonequilibrium Reacting Hypersonic Boundary Layers
,”
AIAA
Paper No. 2000-0539.http://cfdhost.seas.ucla.edu/papers/2000/Ma-Y-2000-AIAA-2000-539-923.pdf
31.
Ma
,
Y.
, and
Zhong
,
X.
,
2001
, “
Numerical Simulation of Receptivity and Stability of Nonequilibrium Reacting Hypersonic Boundary Layers
,”
AIAA
Paper No. 2001-0892.http://cfdhost.seas.ucla.edu/papers/2001/Ma-Y-2001-AIAA-2001-892-847.pdf
32.
Parsons
,
N.
,
Zhong
,
X.
,
Kim
,
J.
, and
Eldredge
,
J.
,
2010
, “
Numerical Study of Hypersonic Receptivity With Thermochemical Non-Equilibrium on a Blunt Cone
,”
AIAA
Paper No. 2010-4446.https://arc.aiaa.org/doi/pdf/10.2514/6.2010-4446
33.
Wang
,
X.
, and
Zhong
,
X.
,
2011
, “ “
Development and Validation of a High-Order Shock-Fitting Non-Equilibrium Flow Solver
,”
AIAA
Paper No. 2011-365.
34.
Prakash
,
A.
,
Parsons
,
N.
,
Wang
,
X.
, and
Zhong
,
X.
,
2011
, “
High-Order Shock-Fitting Methods for Direct Numerical Simulation of Hypersonic Flow With Chemical and Thermal Nonequilibrium
,”
J. Comput. Phys.
,
230
(
23
), pp.
8474
8507
.
35.
Srinivasan
,
S.
,
Tannehill
,
J. C.
, and
Weilmuenster
,
K. J.
,
1987
, “
Simplified Curve Fits for the Thermodynamic Properties of Equilibrium Air
,” National Aeronautics and Space Administration, Hampton, VA, Technical Report No. 1181.
36.
Srinivasan
,
S.
, and
Tannehill
,
J.
,
1987
, “
Simplified Curve Fits for the Transport Properties of Equilibrium Air
,” National Advisory Committee for Aeronautics, Hampton, VA, Technical Report No.
178411
.https://ntrs.nasa.gov/search.jsp?R=19880015527
37.
Hornung
,
H.
,
1972
, “
Non-Equilibrium Dissociating Nitrogen Flow Over Spheres and Circular Cylinders
,”
J. Fluid Mech.
,
53
(
1
), pp.
149
176
.
38.
Hejranfar
,
K.
,
Moghadam
,
R.
, and
Esfahanian
,
V.
,
2008
, “
Dual-Code Solution Procedure for Efficient Computing Equilibrium Hypersonic Axisymmetric Laminar Flows
,”
Aerosp. Sci. Technol.
,
12
(
2
), pp.
135
149
.
39.
Hejranfar
,
K.
,
Esfahanian
,
V.
, and
Kamali-Moghadam
,
R.
,
2012
, “
Dual-Code Solution Procedure for Efficient Computing Equilibrium Hypersonic Axisymmetric Transitional/Turbulent Flows
,”
Aerosp. Sci. Technol.
,
21
(
1
), pp.
64
74
.
You do not currently have access to this content.