The occurrence of self-excited noise felt as squealing noise is a critical issue for an electrohydraulic servovalve that is an essential part of the hydraulic servocontrol system. Aiming to highlight the root causes of the self-excited noise, the effect of oil viscosity on the noise production inside a two-stage servovalve is investigated in this paper. The pressure pulsations' characteristics and noise characteristics are studied at three different oil viscosities experimentally by focusing on the flapper-nozzle pilot stage of a two-stage servovalve. The cavitation-induced and vortex-induced pressure pulsations' characteristics at upstream and downstream of the turbulent jet flow path are extracted and analyzed numerically by comparing with the experimental measured pressure pulsations and noise characteristics. The numerical simulations of transient cavitation shedding phenomenon are also validated by the experimental cavitation observations at different oil viscosities. Both numerical simulations and experimental cavitation observations explain that cavitation shedding phenomenon is intensified with the decreasing of oil viscosity. The small-scale vortex propagation with the characteristic of generating, growing, moving, and merging is numerically simulated. Thus, this study reveals that the oil viscosity affects the transient distribution of cavitation and small-scale vortex, which, in turn, enhances the pressure pulsation and noise. The noise characteristics achieve a good agreement with pressure pulsation characteristics showing that the squealing noise appears accompanied by the flow field resonance in the flapper-nozzle. The flow-acoustic resonance and resulting squealing noise possibly occurs when the amplitude of the pressure pulsations near the flapper is large enough inside a two-stage servovalve.

References

1.
Zhang
,
K.
,
Yao
,
J.
, and
Jiang
,
T.
,
2014
, “
Degradation Assessment and Life Prediction of Electro-Hydraulic Servo Valve Under Erosion Wear
,”
Eng. Fail. Anal.
,
36
, pp.
284
300
.
2.
Li
,
S.
, and
Song
,
Y.
,
2007
, “
Dynamic Response of a Hydraulic Servo-Valve Torque Motor With Magnetic Fluids
,”
Mechatronics
,
17
(
8
), pp.
442
447
.
3.
Li
,
S.
, and
Bao
,
W.
,
2008
, “
Influence of Magnetic Fluids on the Dynamic Characteristics of a Hydraulic Servo-Valve Torque Motor
,”
Mech. Syst. Signal Process.
,
22
(
4
), pp.
1008
1015
.
4.
Weber
,
S. T.
,
Porteiro
,
J. L.
,
Rahman
,
M. M.
,
Pennington
,
R. E.
, and
Musallam
,
A. E.
,
1998
, “
Self-Sustaining Flow Oscillations in Counterbalance Valves
,”
Bath Workshop on Power Transmission and Motion Control
, pp.
207
217
.
5.
Li
,
S.
,
Peng
,
J.
,
Zhang
,
S.
, and
Mchenya
,
J. M.
,
2012
, “
Depression of Self-Excited Pressure Oscillations and Noise in the Pilot Stage of a Hydraulic Jet-Pipe Servo-Valve Using Magnetic Fluids
,”
Adv. Mater. Res.
,
378
, pp.
632
635
.
6.
Peng
,
J.
,
Li
,
S.
, and
Fan
,
Y.
,
2014
, “
Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves Under Electromagnetic Excitations
,”
Adv. Mech. Eng.
,
6
, p.
247384
.
7.
Watton
,
J.
,
1987
, “
The Effect of Drain Orifice Damping on the Performance Characteristics of a Servovalve Flapper/Nozzle Stage
,”
ASME J. Dyn. Syst., Meas., Control
,
109
(
1
), pp.
19
23
.
8.
Porteiro
,
J. L.
,
Weber
,
S. T.
, and
Rahman
,
M. M.
,
1997
, “
An Experimental Study of Flow Induced Noise in Counterbalance Valves
,”
International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise
, Dallas, TX, pp.
557
562
.
9.
Martin
,
C. S.
,
Medlarz
,
H.
,
Wiggert
,
D. C.
, and
Brennen
,
C.
,
1981
, “
Cavitation Inception in Spool Valves
,”
ASME J. Fluids Eng.
,
103
(
4
), pp.
564
575
.
10.
Zou
,
J.
,
Fu
,
X.
,
Du
,
X. W.
,
Ruan
,
X. D.
,
Ji
,
H.
,
Ryu
,
S.
, and
Ochiai
,
M.
,
2008
, “
Cavitation in a Non-Circular Opening Spool Valve With U-Grooves
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
4
), pp.
413
420
.
11.
Lu
,
L.
,
Zou
,
J.
, and
Fu
,
X.
,
2012
, “
The Acoustics of Cavitation in Spool Valve With U-Notches
,”
Proc. Inst. Mech. Eng. Part G
,
226
(
5
), pp.
540
549
.
12.
Fu
,
X.
,
Lu
,
L.
,
Ruan
,
X. D.
,
Zou
,
J.
, and
Du
,
X. W.
,
2008
, “
Noise Properties in Spool Valves With Cavitating Flow
,”
International Conference on Intelligent Robotics and Applications
, pp.
1241
1249
.
13.
Yi
,
D. Y.
,
Lu
,
L.
,
Zou
,
J.
, and
Fu
,
X.
,
2016
, “
Squeal Noise in Hydraulic Poppet Valves
,”
J. Zhejiang Univ. Sci. A
,
17
(
4
), pp.
317
324
.
14.
Xu
,
B.
,
Su
,
Q.
,
Zhang
,
J.
, and
Lu
,
Z.
,
2017
, “
A Dead-Band Model and Its Online Detection for the Pilot Stage of a Two-Stage Directional Flow Control Valve
,”
Proc. Inst. Mech. Eng. Part C
,
230
(
4
), pp.
639
654
.
15.
Xu
,
B.
,
Su
,
Q.
,
Zhang
,
J.
, and
Lu
,
Z.
,
2017
, “
Analysis and Compensation for the Cascade Dead-Zones in the Proportional Control Valve
,”
ISA Trans.
,
66
, pp.
393
403
.
16.
Le
,
Q.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
1993
, “
Partial Cavities: Pressure Pulse Distribution Around Cavity Closure
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
249
254
.
17.
Stanley
,
C.
,
Barber
,
T.
, and
Rosengarten
,
G.
,
2014
, “
Re-Entrant Jet Mechanism for Periodic Cavitation Shedding in a Cylindrical Orifice
,”
Int. J. Heat Fluid Flow
,
50
, pp.
169
176
.
18.
Dai
,
S.
,
Younis
,
B. A.
, and
Sun
,
L.
,
2014
, “
Large-Eddy Simulations of Cavitation in a Square Surface Cavity
,”
Appl. Math. Model.
,
38
(
23
), pp.
5665
5683
.
19.
Leroux
,
J. B.
,
Astolfi
,
J. A.
, and
Billard
,
J. Y.
,
2004
, “
An Experimental Study of Unsteady Partial Cavitation
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
94
101
.
20.
Watanabe
,
S.
,
Tsujimoto
,
Y.
, and
Furukawa
,
A.
,
2001
, “
Theoretical Analysis of Transitional and Partial Cavity Instabilities
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
692
697
.
21.
Chong
,
D.
,
Zhao
,
Q.
,
Yuan
,
F.
,
Cong
,
Y.
,
Chen
,
W.
, and
Yan
,
J.
,
2015
, “
Experimental and Theoretical Study on the Second Dominant Frequency in Submerged Steam Jet Condensation
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
744
758
.
22.
Chen
,
W.
,
Zhao
,
Q.
,
Wang
,
Y.
,
Sen
,
P. K.
,
Chong
,
D.
, and
Yan
,
J.
,
2016
, “
Characteristic of Pressure Oscillation Caused by Turbulent Vortexes and Affected Region of Pressure Oscillation
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
24
33
.
23.
Zhu
,
J.
,
Chen
,
H.
, and
Chen
,
X.
,
2013
, “
Large Eddy Simulation of Vortex Shedding and Pressure Fluctuation in Aerostatic Bearings
,”
J. Fluids Struct.
,
40
, pp.
42
51
.
24.
Li
,
S.
,
Aung
,
N. Z.
,
Zhang
,
S.
,
Cao
,
J.
, and
Xue
,
X.
,
2013
, “
Experimental and Numerical Investigation of Cavitation Phenomenon in Flapper-Nozzle Pilot Stage of an Electrohydraulic Servo-Valve
,”
Comput. Fluids
,
88
, pp.
590
598
.
25.
Aung
,
N. Z.
, and
Li
,
S.
,
2014
, “
A Numerical Study of Cavitation Phenomenon in a Flapper-Nozzle Pilot Stage of an Electrohydraulic Servo-Valve With an Innovative Flapper Shape
,”
Energy Convers. Manage.
,
77
, pp.
31
39
.
26.
Yang
,
Q.
,
Aung
,
N. Z.
, and
Li
,
S.
,
2015
, “
Confirmation on the Effectiveness of Rectangle-Shaped Flapper in Reducing Cavitation in Flapper-Nozzle Pilot Stage
,”
Energy Convers. Manage.
,
98
, pp.
184
198
.
27.
Zhang
,
S.
, and
Li
,
S.
,
2015
, “
Cavity Shedding Dynamics in a Flapper–Nozzle Pilot Stage of an Electro-Hydraulic Servo-Valve: Experiments and Numerical Study
,”
Energy Convers. Manage.
,
100
, pp.
370
379
.
28.
Wang
,
G.
, and
Ostoja-Starzewski
,
M.
,
2007
, “
Large Eddy Simulation of a Sheet/Cloud Cavitation on a NACA0015 Hydrofoil
,”
Appl. Math. Model.
,
31
(
3
), pp.
417
447
.
29.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
,
2010
, “
Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121301
.
30.
ANSYS/FLUENT
,
2011
,
Users Guide
, 13th ed., ANSYS, Inc., Canonsburg, PA.
31.
Hutli
,
E.
, and
Nedeljkovic
,
M.
,
2008
, “
Frequency in Shedding/Discharging Cavitation Clouds Determined by Visualization of a Submerged Cavitating Jet
,”
ASME J. Fluids Eng.
,
130
(
2
), p.
021304
.
32.
Nishimura
,
S.
,
Takakuwa
,
O.
, and
Soyama
,
H.
,
2012
, “
Similarity Law on Shedding Frequency of Cavitation Cloud Induced by a Cavitating Jet
,”
J. Fluid Sci. Technol.
,
7
(
3
), pp.
405
420
.
You do not currently have access to this content.