In the present work, a numerical study is carried out to compare the performance of seven turbulence models on a single pitching blade of cycloidal rotor operating in deep dynamic stall regime at moderate Reynolds number. The investigated turbulence models were: (i) kω-shear stress transport (SST), (ii) kω-SST with γ, (iii) transition SST (γ–Reθ), (iv) scale adaptive simulation (SAS), (v) SAS coupled with transition SST, (vi) SAS with γ, and (vii) detached eddy simulation (DES) coupled with transition kω-SST. The wake vortices evolution and shedding analysis are also carried out for the pitching blade. The performance of the investigated turbulence models is evaluated at various critical points on the hysterias loop of lift and drag coefficients. The predictions of the investigated turbulence models are in good agreement at lower angle of attack, i.e., αu ≤ 20 deg. The detailed quantitative analysis at critical points showed that the predictions of SAS and transition SST-SAS turbulence models are in better agreement with the experimental results as compared to the other investigated models. The wake vortices analysis and fast Fourier transport analysis showed that the wake vortex characteristics of a pitching blade are significantly different than those for the low amplitude oscillating blade at the higher reduced frequency.

References

References
1.
Leger Monteiro
,
J. A.
,
Páscoa
,
J. C.
, and
Xisto
,
C. M.
,
2016
, “
Aerodynamic Optimization of Cyclorotors
,”
Aircr. Eng. Aerosp. Technol.
,
88
(
2
), pp.
232
245
.
2.
Gagnon
,
L.
,
Morandini
,
M.
,
Quaranta
,
G.
,
Masarati
,
P.
,
Xisto
,
C. M.
, and
Páscoa
,
J. C.
,
2018
, “
Aeroelastic Analysis of a Cycloidal Rotor Under Various Operating Conditions
,”
J. Aircr.
(accepted)
3.
Xisto
,
C. M.
,
Leger
,
J. A.
,
Páscoa
,
J. C.
,
Gagnon
,
L.
,
Masarati
,
P.
,
Angeli
,
D.
, and
Dumas
,
A.
,
2017
, “
Parametric Analysis of a Large-Scale Cycloidal Rotor in Hovering Conditions
,”
J. Aerosp. Eng.
,
30
(
1
), pp.
90
107
.
4.
Yun
,
C. Y.
,
Park
,
I. K.
,
Hwang
,
I. S.
, and
Kim
,
S. J.
,
2005
, “
Thrust Control Mechanism of VTOL UAV Cyclocopter With Cycloidal Blades System
,”
J. Intell. Mater. Syst. Struct.
,
16
(
11–12
), pp.
937
943
.
5.
Sirohi
,
J.
,
Parsons
,
E.
, and
Chopra
,
I.
,
2007
, “
Hover Performance of a Cycloidal Rotor for a Micro Air Vehicle
,”
J. Am. Helicopter Soc.
,
52
(
3
), pp.
263
279
.
6.
Foshag
,
W. F.
, and
Boehler
,
G. D.
,
1969
, “
Review and Preliminary Evaluation of Lifting Horizontal-Axis Rotating-Wing Aeronautical Systems
,”
U.S.A. AVLABS Tech. Rep.
,
69
(
13
), pp.
1
431
.
7.
Hwang
,
I. S.
,
Min
,
S. Y.
,
Lee
,
C. H.
, and
Kim
,
S. J.
,
2008
, “
Development of a Four-Rotor Cyclocopter
,”
J. Aircr.
,
45
(
6
), pp.
2151
2157
.
8.
Singh
,
K.
,
Premachandran
,
B.
, and
Ravi
,
M. R.
,
2018
, “
Effect of Thermal Barrier Coating and Gas Radiation on Film Cooling of a Corrugated Surface
,”
ASME J. Heat Transfer
(accepted).
9.
Singh
,
K.
,
Premachandran
,
B.
, and
Ravi
,
M. R.
,
2017
, “
Experimental and Numerical Studies on Film Cooling With Reverse/Backward Coolant Injection
,”
Int. J. Therm. Sci.
,
111
, pp.
390
408
.
10.
Singh
,
K.
,
Premachandran
,
B.
, and
Ravi
,
M. R.
,
2016
, “
Experimental and Numerical Studies on Film Cooling of a Corrugated Surface
,”
Appl. Therm. Eng.
,
108
, pp.
312
329
.
11.
Pascoa
,
J. C.
, and
Ilieva
,
G. I.
,
2012
, “
Overcoming Stopovers in Cycloidal Rotor Propulsion Integration
,”
ASME
Paper No. DETC2012-70894.
12.
Wernert
,
P.
,
Geissler
,
W.
,
Raffel
,
M.
, and
Kompenhans
,
J.
,
1996
, “
Experimental and Numerical Investigations of Dynamic Stall on a Pitching Airfoil
,”
AIAA J.
,
34
(
5
), pp.
982
989
.
13.
Lee
,
T.
, and
Gerontakos
,
P.
,
2004
, “
Investigation of Flow Over an Oscillating Airfoil
,”
J. Fluid Mech.
,
512
, pp.
313
341
.
14.
Mccroskey
,
W. J.
, and
Philippe
,
J. J.
,
1975
, “
Unsteady Viscous Flow on Oscillating Airfoils
,”
AIAA J.
,
13
(
1
), pp.
71
79
.
15.
Carr
,
L. W.
,
1988
, “
Progress in Analysis and Prediction of Dynamic Stall
,”
J. Aircr.
,
25
(
1
), pp.
6
17
.
16.
Poirel
,
D.
,
Metivier
,
V.
, and
Dumas
,
G.
,
2011
, “
Computational Aeroelastic Simulations of Self-Sustained Pitch Oscillations of a NACA0012 at Transitional Reynolds Numbers
,”
J. Fluids Struct.
,
27
(
8
), pp.
1262
1277
.
17.
Poels
,
A.
,
Rudmin
,
D.
,
Benaissa
,
A.
, and
Poirel
,
D.
,
2015
, “
Localization of Flow Separation and Transition Over a Pitching NACA0012 Airfoil at Transitional Reynolds Numbers Using Hot-Films
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
124501
.
18.
Rudmin
,
D.
,
Benaissa
,
A.
, and
Poirel
,
D.
,
2013
, “
Detection of Laminar Flow Separation and Transition on a NACA-0012 Airfoil Using Surface Hot-Films
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101104
.
19.
Ouro
,
P.
,
Stoesser
,
T.
, and
Ramírez
,
L.
,
2018
, “
Effect of Blade Cambering on Dynamic Stall in View of Designing Vertical Axis Turbines
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061104
.
20.
Ravelli
,
S.
,
Barigozzi
,
G.
,
Casartelli
,
E.
, and
Mangani
,
L.
,
2017
, “
Assessment of Transition Modeling and Compressibility Effects in a Linear Cascade of Turbine Nozzle Guide Vanes
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
051104
.
21.
Abdollahzadeh
,
M.
,
Esmaeilpour
,
M.
,
Vizinho
,
R.
,
Younesi
,
A.
, and
Pàscoa
,
J. C.
,
2017
, “
Assessment of RANS Turbulence Models for Numerical Study of Laminar-Turbulent Transition in Convection Heat Transfer
,”
Int. J. Heat Mass Transfer
,
115
(
Pt. B
), pp.
1288
1308
.
22.
Jee
,
S.
,
Joo
,
J.
, and
Lin
,
R.-S.
,
2018
, “
Toward Cost-Effective Boundary Layer Transition Simulation With LES
,”
ASME J. Fluids Eng.
(accepted).
23.
Spentzos
,
A.
,
Barakos
,
G.
,
Badcock
,
K.
,
Richards
,
B.
,
Wernert
,
P.
,
Schreck
,
S.
, and
Raffel
,
M.
,
2005
, “
Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics
,”
AIAA J.
,
43
(
5
), pp.
1023
1033
.
24.
Martinat
,
G.
,
Braza
,
M.
,
Hoarau
,
Y.
, and
Harran
,
G.
,
2008
, “
Turbulence Modelling of the Flow Past a Pitching NACA0012 Airfoil at 105 and 106 Reynolds Numbers
,”
J. Fluids Struct.
,
24
(
8
), pp.
1294
1303
.
25.
Im
,
H.-S.
, and
Zha
,
G.-C.
,
2014
, “
Delayed Detached Eddy Simulation of Airfoil Stall Flows Using High-Order Schemes
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111104
.
26.
Tadjfar
,
M.
, and
Asgari
,
E.
,
2018
, “
Active Flow control of dynamic Stall by Means of Continuous Jet Flow at Reynolds Number of 1× 106
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011107
.
27.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2010
, “
Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils
,”
Comput. Fluids
,
39
(
9
), pp.
1529
1541
.
28.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2010
, “
Turbulence Modeling of Deep Dynamic Stall at Relatively Low Reynolds Number
,”
World Congress on Engineering
, London, June 30–July 2, pp.
1
6
.
29.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2012
, “
Turbulence Modeling of Deep Dynamic Stall at Relatively Low Reynolds Number
,”
J. Fluids Struct.
,
33
, pp.
191
209
.
30.
Rodríguez
,
I.
,
Lehmkuhl
,
O.
,
Borrell
,
R.
, and
Oliva
,
A.
,
2013
, “
Direct Numerical Simulation of a NACA0012 in Full Stall
,”
Int. J. Heat Fluid Flow
,
43
, pp.
194
203
.
31.
Kim
,
Y.
, and
Xie
,
Z. T.
,
2016
, “
Modelling the Effect of Freestream Turbulence on Dynamic Stall of Wind Turbine Blades
,”
Comput. Fluids
,
129
, pp.
53
66
.
32.
Egorov
,
Y.
, and
Menter
,
F.
,
2008
, “
Development and Application of SST-SAS Turbulence Model in the DESIDER Project
,”
Notes on Numerical Fluid Mechanics and Multidisciplinary Design
, Vol.
97
, Springer, Berlin, pp.
261
270
.
33.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
34.
Zheng
,
W.
,
Yan
,
C.
,
Liu
,
H.
, and
Luo
,
D.
,
2016
, “
Comparative Assessment of SAS and DES Turbulence Modeling for Massively Separated Flows
,”
Acta Mech. Sin.
,
32
(
1
), pp.
12
21
.
35.
Lind
,
A. H.
,
Jarugumilli
,
T.
,
Benedict
,
M.
,
Lakshminarayan
,
V. K.
,
Jones
,
A. R.
, and
Chopra
,
I.
,
2014
, “
Flow Field Studies on a Micro-Air-Vehicle-Scale Cycloidal Rotor in Forward Flight
,”
Exp. Fluids
,
55
(
12
), pp.
1
17
.
36.
Hu
,
H.
,
Clemons
,
L.
, and
Igarashi
,
H.
,
2011
, “
An Experimental Study of the Unsteady Vortex Structures in the Wake of a Root-Fixed Flapping Wing
,”
Exp. Fluids
,
51
(
2
), pp.
347
359
.
37.
ANSYS,
2016
, “
Fluent—Theory Guide
,” Fluent, Canonsburg, PA.
38.
Patankar
,
S. V.
,
1990
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
39.
Celik
,
I. B.
, and
Li
,
J.
,
2005
, “
Assessment of Numerical Uncertainty for the Calculations of Turbulent Flow Over a Backward-Facing Step
,”
Int. J. Numer. Methods Fluids
,
49
(
9
), pp.
1015
1031
.
40.
Rahman
,
A. H. A.
,
Mohd
,
N. A. R. N.
,
Lazim
,
T. M.
, and
Mansor
,
S.
,
2017
, “
Aerodynamics of Harmonically Oscillating Aerofoil at Low Reynolds Number
,”
J. Aerosp. Technol. Manage.
,
9
(
1
), pp.
83
90
.
41.
Raffel
,
M.
,
Kompenhans
,
J.
, and
Wernert
,
P.
,
1995
, “
Investigation of the Unsteady Flow Velocity Field Above an Airfoil Pitching Under Deep Dynamic Stall Conditions
,”
Exp. Fluids
,
19
(
2
), pp.
103
111
.
42.
Vizinho
,
R.
,
Páscoa
,
J.
, and
Silvestre
,
M.
,
2015
, “
Turbulent Transition Modeling Through Mechanical Considerations
,”
Appl. Math. Comput.
,
269
, pp.
308
325
.
43.
McCroskey
,
W. J.
,
Carr
,
L. W.
, and
McAlister
,
K. W.
,
1976
, “
Dynamic Stall Experiments on Oscillating Airfoils
,”
AIAA J.
,
14
(
1
), pp.
57
63
.
44.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Summer Program
1988, Stanford, CA, June 27–July 22, pp.
193
208
.https://www.researchgate.net/publication/234550074_Eddies_streams_and_convergence_zones_in_turbulent_flows
45.
Bohl
,
D. G.
, and
Koochesfahani
,
M. M.
,
2009
, “
MTV Measurements of the Vortical Field in the Wake of an Airfoil Oscillating at High Reduced Frequency
,”
J. Fluid Mech.
,
620
, pp.
63
88
.
46.
Ashraf
,
I.
,
Agrawal
,
A.
,
Khan
,
M. H.
,
Sooraj
,
P.
,
Srivastava
,
A.
, and
Sharma
,
A.
,
2015
, “
Thrust Generation and Wake Structure for Flow Across a Pitching Airfoil at Low Reynolds Number
,”
Sadhana
,
40
(
8
), pp.
2367
2379
.
47.
Schnipper
,
T.
,
Andersen
,
A.
, and
Bohr
,
T.
,
2009
, “
Vortex Wakes of a Flapping Foil
,”
J. Fluid Mech.
,
633
, pp.
411
423
.
48.
Koochesfahani
,
M. M.
,
1989
, “
Vortical Patterns in the Wake of an Oscillating Airfoil
,”
AIAA J.
,
27
(
9
), pp.
1200
1205
.
49.
Goyaniuk
,
L.
,
Itwarbarrett
,
C.
,
Poirel
,
D.
, and
Benaissa
,
A.
,
2017
, “
Flow Spectral Analysisin the Wake of a Self-Sustained Oscillating Airfoil Abstract
,” Congrès Français de Mécanique, pp.
1
14
.
50.
Yarusevych
,
S.
, and
Boutilier
,
M. S. H.
,
2010
, “
Vortex Shedding Characteristics of a NACA 0018 Airfoil at Low Reynolds Numbers
,”
AIAA
Paper No. 2010-4628.
51.
Onoue
,
K.
, and
Breuer
,
K. S.
,
2016
, “
Vortex Formation and Shedding From a Cyber-Physical Pitching Plate
,”
J. Fluid Mech.
,
793
, pp.
229
247
.
You do not currently have access to this content.