Hydrodynamic cavitation downstream a range of micropillar geometries entrenched in a microchannel were studied experimentally. Pressurized helium gas at the inlet tank and vacuum pressure at the outlet propelled distilled water through the device and trigger cavitation. The entire process from cavitation inception to the development of elongated attached cavity was recorded. Three modes of cavitation inception were observed and key parameters of cavitation processes, such as cavity length and angle of attachment, were compared among various micropillar geometries. Cavitation downstream of a triangular micropillar was found to have a distinct inception mode with relatively high cavitation inception numbers. After reaching its full elongated form, it prevailed through a larger system pressures and possessed the longest attached cavity. Cavity angle of attachments was predominantly related to the shape of the micropillar. Micropillars with sharp vertex led to lower cavity attachment angles close to the flow separation point, while circular micropillars resulted in higher angles. Twin circular micropillars have a unique cavitation pattern that was affected by vortex shedding. Fast Fourier transformation (FFT) analysis of the cavity image intensity revealed transverse cavity shedding frequencies in various geometries and provided an estimation for vortex shedding frequencies.

References

References
1.
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Size Scale Effects on Cavitating Flows Through Microorifices Entrenched in Rectangular Microchannels
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
987
999
.
2.
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Cavitation in Flow Through a Micro-Orifice Inside a Silicon Microchannel
,”
Phys. Fluids
,
17
(
1
), p.
013601
.
3.
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Flow Visualization of Cavitating Flows Through a Rectangular Slot Micro-Orifice Ingrained in a Microchannel
,”
Phys. Fluids
,
17
(
11
), pp.
1
14
.
4.
Mishra
,
C.
, and
Peles
,
Y.
,
2006
, “
An Experimental Investigation of Hydrodynamic Cavitation in Micro-Venturis
,”
Phys. Fluids
,
18
(
10
), p.
103603
.
5.
Medrano
,
M.
,
Zermatten
,
P. J.
,
Pellone
,
C.
,
Franc
,
J. P.
, and
Ayela
,
F.
,
2011
, “
Hydrodynamic Cavitation in Microsystems. I. Experiments With Deionized Water and Nanofluids
,”
Phys. Fluids
,
23
(
12
), p.
127103
.
6.
Gothsch
,
T.
,
Schilcher
,
C.
,
Richter
,
C.
,
Beinert
,
S.
,
Dietzel
,
A.
,
Buttgenbach
,
S.
, and
Kwade
,
A.
,
2015
, “
High-Pressure Microfluidic Systems (HPMS): Flow and Cavitation Measurements in Supported Silicon Microsystems
,”
Microfluid. Nanofluid.
,
18
(
1
), pp.
121
130
.
7.
Cioncolini
,
A.
,
Scenini
,
F.
,
Duff
,
J.
,
Szolcek
,
M.
, and
Curioni
,
M.
,
2016
, “
Choked Cavitation in Micro-Orifices: An Experimental Study
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
49
57
.
8.
Stieger
,
T.
,
Agha
,
H.
,
Schoen
,
M.
,
Mazza
,
M. G.
, and
Sengupta
,
A.
,
2017
, “
Hydrodynamic Cavitation in Stokes Flow of Anisotropic Fluids
,”
Nat. Commun.
,
8
, p.
15550
.
9.
Nayebzadeh
,
A.
,
Wang
,
Y.
,
Tabkhi
,
H.
,
Shin
,
J.
, and
Peles
,
Y.
,
2018
, “
Cavitation Behind a Circular Micro Pin Fin
,”
Int. J. Multiphase Flow
,
98
, pp.
67
78
.
10.
Miller
,
M. W.
,
Miller
,
D. L.
, and
Brayman
,
A. A.
,
1996
, “
A Review of In Vivo Bioeffects of Inertial Ultrasonic Cavitation From a Mechanistic Perspective
,”
Ultrasound Med. Biol.
,
22
(
9
), pp.
1131
1154
.
11.
Prentice
,
P.
,
Cuschieri
,
A.
,
Dholakia
,
K.
,
Prausnitz
,
M.
, and
Campbell
,
P.
,
2005
, “
Membrane Disruption By Optically Controlled Microbubble Cavitation
,”
Nat. Phys.
,
1
(
2
), pp.
107
110
.
12.
Hellman
,
A. N.
,
Rau
,
K. R.
,
Yoon
,
H. H.
,
Bae
,
S.
,
Palmer
,
J. F.
,
Phillips
,
K. S.
,
Allbritton
,
N. L.
, and
Venugopalan
,
V.
,
2007
, “
Laser-Induced Mixing in Microfluidic Channels
,”
Anal. Chem.
,
79
(
12
), pp.
4484
4492
.
13.
Koşar
,
A.
,
Şeşen
,
M.
,
Oral
,
O.
,
Itah
,
Z.
, and
Gozuacik
,
D.
,
2011
, “
Bubbly Cavitating Flow Generation and Investigation of Its Erosional Nature for Biomedical Applications
,”
IEEE Trans. Biomed. Eng.
,
58
(
5
), pp.
1337
1346
.
14.
Itah
,
Z.
,
Oral
,
O.
,
Perk
,
O. Y.
,
Sesen
,
M.
,
Demir
,
E.
,
Erbil
,
S.
,
Dogan-Ekici
,
A. I.
,
Ekici
,
S.
,
Kosar
,
A.
, and
Gozuacik
,
D.
,
2013
, “
Hydrodynamic Cavitation Kills Prostate Cells and Ablates Benign Prostatic Hyperplasia Tissue
,”
Exp. Biol. Med. (Maywood)
,
238
(
11
), pp.
1242
50
.
15.
Varga
,
J.
, and
Sebestyen
,
G.
,
1966
, “
Experimental Investigation of Cavitation Noise
,”
La Houille Blanche
,
8
, pp.
905
910
.
16.
Young
,
J. O.
, and
Holl
,
J. W.
,
1966
, “
Effects of Cavitation on Periodic Wakes Behind Symmetric Wedges
,”
ASME J. Basic Eng.
,
37
(
3
), pp.
163
176
.
17.
Varga
,
J.
,
Sebestyen
,
G.
, and
Fay
,
A.
,
1969
, “
Detection of Cavitation by Acoustic and Vibration-Measurement Methods
,”
La Houille Blanche
,
2
, pp.
137
150
.https://www.shf-lhb.org/articles/lhb/pdf/1969/02/lhb1969012.pdf
18.
Arakeri
,
V. H.
,
1975
, “
Viscous Effects on the Position of Cavitation Separation From Smooth Bodies
,”
ASME J. Fluid Mech
,
68
(
04
), pp.
779
799
.
19.
Syamala Rao
,
B. C.
, and
Chandrasekhara
,
D. V.
,
1976
, “
Some Characteristics of Cavity Flow past Cylindrical Inducers in a Venturi
,”
ASME J. Fluids Eng.
,
98
(
3
), pp.
461
466
.
20.
Ramamurthy
,
A. S.
, and
Bhaskaran
,
P.
,
1977
, “
Constrained Flow Past Cavitating Bluff Bodies
,”
ASME J. Fluids Eng.
,
99
(
4
), pp.
717
726
.
21.
Fry
,
S. A.
,
1984
, “
Investigating Cavity/Wake Dynamics for a Circular Cylinder by Measuring Noise Spectra
,”
J. Fluid Mech.
,
142
(
1
), pp.
187
200
.
22.
Matsudaira
,
Y.
,
Gomi
,
Y.
, and
Oba
,
R.
,
1992
, “
Characteristics of Bubble-Collapse Pressures in Karman-Vortex Cavity
,”
JSME Int. J.
,
35
(
2
), pp.
179
185
.
23.
Belahadji
,
B.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
1995
, “
Cavitation in the Rotational Structures of a Turbulent Wake
,”
J. Fluid Mech.
,
287
(
1
), pp.
383
403
.
24.
Tassin Leger
,
A.
,
Bernal
,
L. P.
, and
Ceccio
,
S. L.
,
1998
, “
Examination of the Flow Near the Leading Edge of Attached Cavitation. Part 1. Detachment of Two-Dimensional and Axisymmetric Cavities
,”
J. Fluid Mech.
,
376
(
1998
), pp.
61
90
.
25.
Brandner
,
P. A.
,
Walker
,
G. J.
,
Niekamp
,
P. N.
, and
Anderson
,
B.
,
2010
, “
An Experimental Investigation of Cloud Cavitation About a Sphere
,”
J. Fluid Mech.
,
656
(
December
), pp.
147
176
.
26.
Ausoni
,
P.
,
Farhat
,
M.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Avellan
,
F.
,
2007
, “
Cavitation Influence on Von Kármán Vortex Shedding and Induced Hydrofoil Vibrations
,”
ASME J. Fluids Eng.
, 1
29
(
8
), pp.
966
973
.
27.
Gnanaskandan
,
A.
, and
Mahesh
,
K.
,
2016
, “
Numerical Investigation of Near-Wake Characteristics of Cavitating Flow Over a Circular Cylinder
,”
J. Fluid Mech.
,
790
, pp.
453
491
.
28.
Hegedus
,
F.
,
Rakos
,
R.
, and
Kullmann
,
L.
,
2010
, “
Experimental and Numerical Study on Cavitating Vortex Shedding Behind a Square Cylinder
,”
Period. Polytech., Mech. Eng.
,
2
(
2
), pp.
55
60
.
29.
Kumar
,
P.
,
Chatterjee
,
D.
, and
Bakshi
,
S.
,
2017
, “
Experimental Investigation of Cavitating Structures in the Near Wake of a Cylinder
,”
Int. J. Multiphase Flow
,
89
, pp.
207
217
.
30.
Ganesh
,
H.
,
Schot
,
J.
, and
Ceccio
,
S. L.
,
2014
, “
Stationary Cavitation Bubbles Forming on a Delta Wing Vortex
,”
Phys. Fluids
,
26
, p.
127102
.
31.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford, UK
.
32.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
33.
Ramamurthy
,
A. S.
, and
Balanchandar
,
R.
,
1990
, “
The Near Wake Characteristics of Cavitating Bluff Sources
,”
ASME J. Fluids Eng.
,
112
(
4
), pp.
492
495
.
34.
Yan
,
Y.
, and
Thorpe
,
R. B.
,
1990
, “
Flow Regime Transitions Due to Cavitation in the Flow Through an Orifice
,”
Int. J. Multiphase Flow
,
16
(
6
), pp.
1023
1045
.
35.
Kermeen
,
R. W.
, and
Parkin
,
B. R.
,
1957
,
Incipient Cavitation and Wake Flow behind Sharp-Edged Disks
, Defense Technical Information Center,
Pasadena, CA
.
36.
Saito
,
Y.
, and
Sato
,
K.
,
2003
, “
Cavitation Bubble Collapse and Impact in the Wake of a Circular Cylinder
,” Fifth International Symposium on Cavitation (CAV), Osaka, Japan, Nov. 1–4, Paper No.
Cav03-GS-11-004
.http://flow.me.es.osaka-u.ac.jp/cav2003/Papers/Cav03-GS-11-004.pdf
37.
Sato
,
K.
, and
Kakutani
,
K.
,
1994
, “
Measurements of Cavitation Inception
,”
JSME Int. J. Ser. B
,
37
(
2
), pp.
306
312
.
38.
Ball
,
J. W.
,
Tullis
,
J. P.
, and
Stripling
,
T.
,
1975
,
Predicting Cavitation in Sudden Enlargements
,”
J. Hydraul. Div.
,
101
(
7
), pp.
857
870
.
39.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
,
2000
, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3925
3936
.
40.
Vengallatore
,
S.
,
Peles
,
Y.
,
Arana
,
L. R.
, and
Spearing
,
S. M.
,
2004
, “
Self-Assembly of Micro- and Nanoparticles on Internal Micromachined Silicon Surfaces
,”
Sens. Actuators, A Phys.
,
113
(
1
), pp.
124
131
.
41.
Franc
,
J.-P.
, and
Michel
,
J.-M.
,
2005
,
Fundamentals of Cavitation
,
Springer
,
Dordrecht, The Netherlands
.
42.
Franc
,
J. P.
, and
Michel
,
J. M.
,
1985
, “
Attached Cavitation and the Boundary Layer: Experimental Investigation and Numerical Treatment
,”
J. Fluid Mech.
,
154
(
1
), pp.
63
90
.
43.
Sumner
,
D.
,
2010
, “
Two Circular Cylinders in Cross-Flow: A Review
,”
J. Fluids Struct.
,
26
(
6
), pp.
849
899
.
44.
Williamson
,
C. H. K.
,
1985
, “
Evolution of a Single Wake Behind a Pair of Bluff Bodies
,”
J. Fluids Mech.
,
159
(
1
), pp.
1
18
.
45.
Sumner
,
D.
,
Wong
,
S. S. T.
,
Price
,
S. J.
, and
Paidoussis
,
M. P.
,
1999
, “
Fluid Behaviour Side-By-Side Circular Cylinders Steady Cross-Flow
,”
J. Fluids Struct.
,
13
(
3
), pp.
309
338
.
46.
Alam
,
M.
,
Moriya
,
M.
, and
Sakamoto
,
H.
,
2003
, “
Aerodynamic Characteristics of Two Side-By-Side Circular Cylinders and Application of Wavelet Analysis on the Switching Phenomenon
,”
J. Fluids Struct.
,
18
(
3–4
), pp.
325
346
.
47.
De Giorgi
,
M. G.
,
Ficarella
,
A.
, and
Tarantino
,
M.
,
2013
, “
Evaluating Cavitation Regimes in an Internal Orifice at Different Temperatures Using Frequency Analysis and Visualization
,”
Int. J. Heat Fluid Flow
,
39
, pp.
160
172
.
48.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
.
49.
Pankanin
,
G. L.
,
2005
, “
The Vortex Flowmeter: Various Methods of Investigating Phenomena
,”
Meas. Sci. Technol.
,
16
(
3
), pp.
R1
R16
.
You do not currently have access to this content.