Viscoelastic solution is encountered extensively in microfluidics. In this work, the particle movement of the viscoelastic flow in the contraction–expansion channel is demonstrated. The fluid is described by the Oldroyd-B model, and the particle is driven by dielectrophoretic (DEP) forces induced by the applied electric field. A time-dependent multiphysics numerical model with the thin electric double layer (EDL) assumption was developed, in which the Oldroyd-B viscoelastic fluid flow field, the electric field, and the movement of finite-size particles are solved simultaneously by an arbitrary Lagrangian–Eulerian (ALE) numerical method. By the numerically validated ALE method, the trajectories of particle with different sizes were obtained for the fluid with the Weissenberg number (Wi) of 1 and 0, which can be regarded as the Newtonian fluid. The trajectory in the Oldroyd-B flow with Wi = 1 is compared with that in the Newtonian fluid. Also, trajectories for different particles with different particle sizes moving in the flow with Wi = 1 are compared, which proves that the contraction–expansion channel can also be used for particle separation in the viscoelastic flow. The above results for this work provide the physical insight into the particle movement in the flow of viscous and elastic features.

References

1.
Ai
,
Y.
, and
Qian
,
S.
,
2010
, “
DC Dielectrophoretic Particle-Particle Interactions and Their Relative Motions
,”
J. Colloid Interface Sci.
,
346
(
2
), pp.
448
454
.
2.
Ai
,
Y.
,
Mauroy
,
B.
,
Sharma
,
A.
, and
Qian
,
S.
,
2011
, “
Electrokinetic Motion of a Deformable Particle: Dielectrophoretic Effect
,”
Electrophoresis
,
32
(
17
), pp.
2282
2291
.
3.
Xuan
,
X.
,
Zhu
,
J.
, and
Church
,
C.
,
2010
, “
Particle Focusing in Microfluidic Devices
,”
Microfluid. Nanofluid.
,
9
(
1
), pp.
1
16
.
4.
Martel
,
J. M.
, and
Toner
,
M.
,
2014
, “
Inertial Focusing in Microfluidics
,”
Annu. Rev. Biomed. Eng.
,
16
(
1
), pp.
371
396
.
5.
Tripathi
,
S.
,
Kumar
,
Y. V. B. V.
,
Prabhakar
,
A.
,
Joshi
,
S. S.
, and
Agrawal
,
A.
,
2015
, “
Passive Blood Plasma Separation at the Microscale: A Review of Design Principles and Microdevices
,”
J. Micromech. Microeng.
,
25
(
8
), p.
083001
.
6.
Ostad
,
M. A.
,
Hajinia
,
A.
, and
Heidari
,
T.
,
2017
, “
A Novel Direct and Cost Effective Method for Fabricating Paper-Based Microfluidic Device by Commercial Eye Pencil and Its Application for Determining Simultaneous Calcium and Magnesium
,”
Microchem. J.
,
133
, pp.
545
550
.
7.
Fernández-Baldo
,
M. A.
,
Ortega
,
F. G.
,
Pereira
,
S. V.
,
Bertolino
,
F. A.
,
Serrano
,
M. J.
,
Lorente
,
J. A.
,
Raba
,
J.
, and
Messina
,
G. A.
,
2016
, “
Nanostructured Platform Integrated Into a Microfluidic Immunosensor Coupled to Laser-Induced Fluorescence for the Epithelial Cancer Biomarker Determination
,”
Microchem. J.
,
128
, pp.
18
25
.
8.
de Oliveira Magalhães
,
L.
, and
Fonseca
,
A.
,
2017
, “
A Microfluidic Device With Ion-Exchange Preconcentration Column and Photometric Detection With Schlieren Effect Correction
,”
Microchem. J.
,
132
, pp.
161
166
.
9.
Zhou
,
T.
,
Liu
,
Z.
,
Wu
,
Y.
,
Deng
,
Y.
,
Liu
,
Y.
, and
Liu
,
G.
,
2013
, “
Hydrodynamic Particle Focusing Design Using Fluid-Particle Interaction
,”
Biomicrofluidics
,
7
(
5
), p.
054104
.
10.
Zhou
,
T.
,
Xu
,
Y.
,
Liu
,
Z.
, and
Joo
,
S. W.
,
2015
, “
An Enhanced One-Layer Passive Microfluidic Mixer With an Optimized Lateral Structure With the Dean Effect
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091102
.
11.
Zhang
,
J.
,
Yan
,
S.
,
Yuan
,
D.
,
Alici
,
G.
,
Nguyen
,
N.-T.
,
Warkiani
,
M. E.
, and
Li
,
W.
,
2016
, “
Fundamentals and Applications of Inertial Microfluidics: A Review
,”
Lab Chip
,
16
(
1
), pp.
10
34
.
12.
Zhang
,
Z.
,
Henry
,
E.
,
Gompper
,
G.
, and
Fedosov
,
D. A.
,
2015
, “
Behavior of Rigid and Deformable Particles in Deterministic Lateral Displacement Devices With Different Post Shapes
,”
J. Chem. Phys.
,
143
(
24
), p.
243145
.
13.
Hallfors
,
N. G.
,
Alhammadi
,
F.
, and
Alazzam
,
A.
, 2016, “
Deformation of Red Blood Cells Under Dielectrophoresis
,”
International Conference on Bio-Engineering for Smart Technologies
(
BioSMART
), Dubai, United Arab Emirates, Dec. 4–7, pp.
1
3
.
14.
Sajeesh
,
P.
, and
Sen
,
A. K.
,
2013
, “
Particle Separation and Sorting in Microfluidic Devices: A Review
,”
Microfluid. Nanofluid.
,
17
(
1
), pp.
1
52
.
15.
Zhang
,
C.
,
Khoshmanesh
,
K.
,
Mitchell
,
A.
, and
Kalantarzadeh
,
K.
,
2009
, “
Dielectrophoresis for Manipulation of Micro/Nano Particles in Microfluidic Systems
,”
Anal. Bioanal. Chem.
,
396
(
1
), pp.
401
420
.
16.
Zhou
,
T.
,
Yeh
,
L.-H.
,
Li
,
F.-C.
,
Mauroy
,
B.
, and
Joo
,
S.
,
2016
, “
Deformability-Based Electrokinetic Particle Separation
,”
Micromachines
,
7
(
9
), p.
170
.
17.
Zhou
,
T.
,
Liu
,
T.
,
Deng
,
Y.
,
Chen
,
L.
,
Qian
,
S.
, and
Liu
,
Z.
,
2017
, “
Design of Microfluidic Channel Networks With Specified Output Flow Rates Using the CFD-Based Optimization Method
,”
Microfluid. Nanofluid.
,
21
(
1
), p.
11
.
18.
Zhou
,
T.
,
Shi
,
L.
,
Fan
,
C.
,
Liang
,
D.
,
Weng
,
S.
, and
Joo
,
S. W.
,
2017
, “
A Novel Scalable Microfluidic Load Sensor Based on Electrokinetic Phenomena
,”
Microfluid. Nanofluid.
,
21
(
4
), p.
59
.
19.
Zhou
,
T.
,
Wang
,
H.
,
Shi
,
L.
,
Liu
,
Z.
, and
Joo
,
S.
,
2016
, “
An Enhanced Electroosmotic Micromixer With an Efficient Asymmetric Lateral Structure
,”
Micromachines
,
7
(
12
), p.
218
.
20.
Ai
,
Y.
,
Qian
,
S.
,
Liu
,
S.
, and
Joo
,
S. W.
,
2010
, “
Dielectrophoretic Choking Phenomenon in a Converging-Diverging Microchannel
,”
Biomicrofluidics
,
4
(
1
), p.
13201
.
21.
Dubose
,
J.
,
Lu
,
X.
,
Patel
,
S.
,
Qian
,
S.
,
Woo Joo
,
S.
, and
Xuan
,
X.
,
2014
, “
Microfluidic Electrical Sorting of Particles Based on Shape in a Spiral Microchannel
,”
Biomicrofluidics
,
8
(
1
), p.
014101
.
22.
Zhao
,
C.
, and
Yang
,
C.
,
2013
, “
Electrokinetics of Non-Newtonian Fluids: A Review
,”
Adv. Colloid Interface Sci.
,
201–202
, pp.
94
108
.
23.
Villone
,
M. M.
,
Greco
,
F.
,
Hulsen
,
M. A.
, and
Maffettone
,
P. L.
,
2016
, “
Numerical Simulations of Deformable Particle Lateral Migration in Tube Flow of Newtonian and Viscoelastic Media
,”
J. Non-Newtonian Fluid Mech.
,
234
, pp.
105
113
.
24.
Li
,
X.-B.
,
Oishi
,
M.
,
Matsuo
,
T.
,
Oshima
,
M.
, and
Li
,
F.-C.
,
2016
, “
Measurement of Viscoelastic Fluid Flow in the Curved Microchannel Using Digital Holographic Microscope and Polarized Camera
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091401
.
25.
D'Avino
,
G.
,
Greco
,
F.
, and
Maffettone
,
P. L.
,
2017
, “
Particle Migration Due to Viscoelasticity of the Suspending Liquid and Its Relevance in Microfluidic Devices
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
341
360
.
26.
Zhou
,
T.
,
Ge
,
J.
,
Shi
,
L.
,
Fan
,
J.
,
Liu
,
Z.
, and
Woo Joo
,
S.
,
2018
, “
Dielectrophoretic Choking Phenomenon of a Deformable Particle in a Converging-Diverging Microchannel
,”
Electrophoresis
,
39
(
4
), pp.
590
596
.
27.
Behr
,
M.
,
Arora
,
D.
,
Coronado
,
O.
, and
Pasquali
,
M.
, 2005, “
GLS-Type Finite Element Methods for Viscoelastic Fluid Flow Simulation
,”
Third MIT Conference on Computational Fluid and Solid Mechanics
, Boston, MA, June 14–17, pp.
586
589
.
28.
Keh
,
H.
, and
Anderson
,
J.
,
1985
, “
Boundary Effects on Electrophoretic Motion of Colloidal Spheres
,”
J. Fluid Mech.
,
153
(
1
), pp.
417
439
.
You do not currently have access to this content.