Prewhirl regulation by inlet guide vanes (IGVs) has been proven as an effective method for operation regulation of centrifugal pumps. By contrast, the influence of the geometry of IGVs on operation stability of centrifugal pump remains unknown. The pressure fluctuations and flow patterns in a centrifugal pump without and with two-dimensional (2D) or three-dimensional (3D) IGVs are investigated numerically at 1.0Qd, 0.6Qd, and 1.2Qd. Renormalization group (RNG) k–ε turbulence model is used as turbulence model, and fast Fourier transform (FFT) method is used to analyze the pressure fluctuations. The dominant frequency of pressure fluctuations in impellers is either the rotational frequency fi or twice thereof for pumps without and with IGVs at three flow rates, while the dominant frequency is constantly the blade passing frequency in volute. For 1.0Qd, the comparison of pumps without IGVs indicates that the maximum amplitude of pressure fluctuations at fi in pumps with 2D IGVs is decreased by an average of 22.2%, and the amplitude is decreased by an average of 44.9% in pumps with 3D IGVs. The IGVs mainly influence the pressure fluctuations at fi but indicate minimal influence at 2fi. For 0.6Qd, the comparison of pumps without IGVs denotes that the maximum amplitudes of pressure fluctuations at fi in pumps with 2D or 3D IGVs both increase; the maximum increase is 2.01%. For 1.2Qd, the comparison of pumps without IGVs indicates that the maximum amplitudes of pressure fluctuations at fi in pumps with 2D or 3D IGVs both decrease; the maximum decline is 15.9%.

References

References
1.
Tan
,
J.
,
Wang
,
X.
,
Qi
,
D.
, and
Wang
,
R.
,
2011
, “
The Effects of Radial Inlet With Splitters on the Performance of Variable Inlet Guide Vanes in a Centrifugal Compressor Stage
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
9
), pp.
2089
2105
.
2.
Mohseni
,
A.
,
Goldhahn
,
E.
,
Van den Braembussche
,
R.
, and
Seume
,
J. R.
,
2012
, “
Novel IGV Designs for Centrifugal Compressors and Their Interaction With the Impeller
,”
ASME J. Turbomach.
,
134
(
2
), pp.
21001
21006
.
3.
Zhang
,
Y.
,
Qi
,
D.
, and
Mao
,
Y.
,
2009
, “
Experimental Investigation and Improvement of the Inlet Guide Vane With Plate Vane in a Centrifugal Fan
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
4
), pp.
401
413
.
4.
Tan
,
L.
,
Cao
,
S.
, and
Gui
,
S.
,
2010
, “
Hydraulic Design and Pre–Whirl Regulation Law of Inlet Guide Vane for Centrifugal Pump
,”
Sci. China Technol. Sci.
,
53
(
8
), pp.
2142
2151
.
5.
Tan
,
L.
,
Cao
,
S.
,
Wang
,
Y.
, and
Zhu
,
B.
,
2012
, “
Influence of Axial Distance on Pre–Whirl Regulation by the Inlet Guide Vanes for a Centrifugal Pump
,”
Sci. China Technol. Sci.
,
55
(
4
), pp.
1037
1043
.
6.
Liu
,
Y.
,
Tan
,
L.
,
Liu
,
M.
,
Hao
,
Y.
, and
Xu
,
Y.
,
2017
, “
Influence of Prewhirl Angle and Axial Distance on Energy Performance and Pressure Fluctuations for a Centrifugal Pump With Inlet Guide Vanes
,”
Energies
,
10
(
5
), p.
695
.
7.
Tan
,
L.
,
Zhu
,
B.
,
Cao
,
S.
,
Wang
,
Y.
, and
Wang
,
B.
,
2014
, “
Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump
,”
Energies
,
7
(
2
), pp.
1050
1065
.
8.
Wang
,
Y.
,
Tan
,
L.
,
Zhu
,
B.
,
Cao
,
S.
, and
Wang
,
B.
,
2015
, “
Numerical Investigation of Influence of Inlet Guide Vanes on Unsteady Flow in a Centrifugal Pump
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
18
), pp.
3405
3416
.
9.
Hou
,
H.
,
Zhang
,
Y.
,
Li
,
Z.
, and
Zhang
,
Y.
,
2017
, “
A CFD Study of IGV Vane Number on Hydraulic Characteristics and Pressure Pulsation of a Centrifugal Pump
,”
J. Vibroengineering
,
19
(
1
), pp.
563
576
.
10.
Zhang
,
D.
,
Shi
,
W.
,
Esch
,
B.
,
Shi
,
L.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Trajectory and Dynamics in an Axial Flow Pump
,”
Comput. Fluids
,
112
, pp.
61
71
.
11.
Zhang
,
D.
,
Shi
,
L.
,
Shi
,
W.
,
Zhao
,
R.
,
Wang
,
H.
, and
Esch
,
B.
,
2015
, “
Numerical Analysis of Unsteady Tip Leakage Vortex Cavitation Cloud and Unstable Suction–Side–Perpendicular Cavitating Vortices in an Axial Flow Pump
,”
Int. J. Multiphase Flow
,
77
, pp.
244
259
.
12.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.
13.
Barrio
,
R.
,
Parrondo
,
J.
, and
Blanco
,
E.
,
2010
, “
Numerical Analysis of the Unsteady Flow in the Near–Tongue Region in a Volute–Type Centrifugal Pump for Different Operating Points
,”
Comput. Fluids
,
39
(
5
), pp.
859
870
.
14.
Barrio
,
R.
,
Fernandez
,
J.
,
Blanco
,
E.
, and
Parrondo
,
J.
,
2011
, “
Estimation of Radial Load in Centrifugal Pumps Using Computational Fluid Dynamics
,”
Eur. J. Mech.–B/Fluids
,
30
(
3
), pp.
316
324
.
15.
Bing
,
H.
, and
Cao
,
S.
,
2014
, “
Experimental Study of the Influence of Flow Passage Subtle Variation on Mixed–Flow Pump Performance
,”
Chin. J. Mech. Eng.
,
27
(
3
), pp.
615
621
.
16.
Liu
,
Y.
,
Tan
,
L.
,
Hao
,
Y.
, and
Xu
,
Y.
,
2017
, “
Energy Performance and Flow Patterns of a Mixed–Flow Pump With Different Tip Clearance Sizes
,”
Energies
,
10
(
2
), p.
191
.
17.
Xu
,
Y.
,
Tan
,
L.
,
Liu
,
Y.
, and
Cao
,
S.
,
2017
, “
Pressure Fluctuations and Flow Pattern of a Mixed–Flow Pump With Different Blade Tip Clearances Under Cavitation Condition
,”
Adv. Mech. Eng.
,
9
(
4
), pp.
1
12
.
18.
Tan
,
L.
,
Yu
,
Z.
,
Xu
,
Y.
,
Liu
,
Y.
, and
Cao
,
S.
,
2017
, “
Role of Blade Rotational Angle on Energy Performance and Pressure Fluctuations of a Mixed–Flow Pump
,”
Proc. Inst. Mech. Eng., Part A
,
231
(
3
), pp.
227
238
.
19.
Hao
,
Y.
,
Tan
,
L.
,
Liu
,
Y.
,
Xu
,
Y.
,
Zhang
,
J.
, and
Zhu
,
B.
,
2017
, “
Energy Performance and Radial Force of a Mixed–Flow Pump With Symmetrical and Unsymmetrical Tip Clearances
,”
Energies
,
10
(
1
), p.
57
.
20.
Zhang
,
Y.
,
Chen
,
T.
,
Li
,
J.
, and
Yu
,
J.
,
2017
, “
Experimental Study of Load Variations on Pressure Fluctuations in a Prototype Reversible Pump Turbine in Generating Mode
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
074501
.
21.
Zhang
,
Y.
,
Zhu
,
Z.
,
Jin
,
Y.
,
Cui
,
B.
,
Li
,
Y.
, and
Dou
,
H.
,
2013
, “
Experimental Study on a Centrifugal Pump With an Open Impeller During Startup Period
,”
J. Therm. Sci.
,
22
(
1
), pp.
1
6
.
22.
Zhang
,
Y.
,
Zhu
,
Z.
, and
Li
,
W.
,
2016
, “
Experiments on Transient Performance of a Low Specific Speed Centrifugal Pump With Open Impeller
,”
Proc. Inst. Mech. Eng. Part A
,
230
(
7
), pp.
648
659
.
23.
Pei
,
J.
,
Yuan
,
S.
,
Benra
,
F.
, and
Dohmen
,
H.
,
2012
, “
Numerical Prediction of Unsteady Pressure Field Within the Whole Flow Passage of a Radial Single–Blade Pump
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101103
.
24.
Tan
,
L.
,
Zhu
,
B.
,
Cao
,
S.
,
Wang
,
Y.
, and
Wang
,
B.
,
2014
, “
Numerical Simulation of Unsteady Cavitation Flow in a Centrifugal Pump at Off–Design Conditions
,”
Proc. Inst. Mech. Eng., Part C
,
228
(11), pp.
1994
2006
.
25.
Pei
,
J.
,
Yuan
,
S.
,
Li
,
X.
, and
Yuan
,
J.
,
2014
, “
Numerical Prediction of 3–D Periodic Flow Unsteadiness in a Centrifugal Pump Under Part–Load Condition
,”
J. Hydrodyn.
,
26
(
2
), pp.
257
263
.
26.
Tan
,
L.
,
Zhu
,
B.
,
Wang
,
Y.
,
Cao
,
S.
, and
Gui
,
S.
,
2015
, “
Numerical Study on Characteristics of Unsteady Flow in a Centrifugal Pump Volute at Partial Load Condition
,”
Eng. Comput.
,
32
(
6
), pp.
1549
1566
.
27.
Chen
,
T.
,
Zhang
,
Y.
, and
Li
,
S.
,
2016
, “
Instability of Large–Scale Prototype Francis Turbines of Three Gorges Power Station at Part Load
,”
Proc. Inst. Mech. Eng. Part A
,
230
(
7
), pp.
619
632
.
28.
Dhakal
,
P.
,
Walters
,
D.
, and
Strasser
,
W.
,
2014
, “
Numerical Study of Gas–Cyclone Airflow: An Investigation of Turbulence Modelling Approaches
,”
Int. J. Comput. Fluid Dyn.
,
28
(
1–2
), pp.
1
15
.
You do not currently have access to this content.