Efficient actuation of liquid slugs in microfluidic circuits is a matter of interest in droplet-based microfluidic (DMF) applications. In this paper, the electrowetting on dielectric (EWOD) actuation of a liquid slug fully confined in a microchannel is studied. A set of experiments are conducted in which the mean transport velocity of a liquid slug enclosed in a microchannel of rectangular cross section and actuated by EWOD method is measured. A printed circuit board-based (PCB-based) microfluidic chip is used as the platform, and the transport velocity of the slug is measured by processing the images recorded by a high-speed camera while the slug moves in the channel. To investigate the effect of microchannel geometry on the mean transport velocity of the slugs, different channel heights and widths (ranging between 250440μm and 1–2 mm, respectively) as well as different liquid volumes (ranging between 2.94and5.15μL) are tested and slug velocities up to 14.9 mm/s are achieved. A theoretical model is also developed to analyze the effect of involved parameters on the transport velocity. The results show that, within the range of design parameters considered in this study, for a constant slug volume and channel width, increasing the channel height enhances the velocity. Moreover, keeping the slug volume and channel height fixed, the transport velocity is increased by enlarging the channel width. An inverse proportionality between the slug length and velocity is also observed. These results are also shown to agree with the theoretical model developed.

References

References
1.
Fornell
,
A.
,
Ohlin
,
M.
,
Garofalo
,
F.
,
Nilsson
,
J.
, and
Tenje
,
M.
,
2017
, “
An Intra-Droplet Particle Switch for Droplet Microfluidics Using Bulk Acoustic Waves
,”
Biomicrofluidics
,
11
(
3
), p.
031101
.
2.
Aroonnual
,
A.
,
Janvilisri
,
T.
,
Ounjai
,
P.
, and
Chankhamhaengdecha
,
S.
,
2017
, “
Microfluidics: Innovative Approaches for Rapid Diagnosis of Antibiotic-Resistant Bacteria
,”
Essays Biochem.
,
61
(
1
), pp.
91
101
.
3.
Alavi
,
S.
,
Kazemi
,
A.
, and
Passandideh-Fard
,
M.
,
2015
, “
Hot-Spot Cooling Using Microliter Liquid Drops
,”
Appl. Therm. Eng.
,
76
, pp.
310
323
.
4.
Chakrabarty
,
K.
,
Paik
,
P. Y.
, and
Pamula
,
V. K.
,
2007
,
Adaptive Cooling of Integrated Circuits Using Digital Microfluidics
,
Artech House
, Norwood, MA.
5.
He
,
T.
,
Jin
,
M.
,
Eijkel
,
J. C.
,
Zhou
,
G.
, and
Shui
,
L.
,
2016
, “
Two-Phase Microfluidics in Electrowetting Displays and Its Effect on Optical Performance
,”
Biomicrofluidics
,
10
(
1
), p.
011908
.
6.
Teo
,
A. J.
,
Li
,
K.-H. H.
,
Nguyen
,
N.-T.
,
Guo
,
W.
,
Heere
,
N.
,
Xi
,
H.-D.
,
Tsao
,
C.-W.
,
Li
,
W.
, and
Tan
,
S. H.
,
2017
, “
Negative Pressure Induced Droplet Generation in a Microfluidic Flow-Focusing Device
,”
Anal. Chem.
,
89
(
8
), pp.
4387
4391
.
7.
Le
,
T.-L.
,
Chen
,
J.-C.
, and
Nguyen
,
H.-B.
,
2017
, “
Numerical Study of the Thermocapillary Droplet Migration in a Microchannel Under a Blocking Effect From the Heated Upper Wall
,”
Appl. Therm. Eng.
,
122
, pp.
820
830
.
8.
Sen
,
U.
,
Chatterjee
,
S.
,
Sen
,
S.
,
Tiwari
,
M. K.
,
Mukhopadhyay
,
A.
, and
Ganguly
,
R.
,
2017
, “
Dynamics of Magnetic Modulation of Ferrofluid Droplets for Digital Microfluidic Applications
,”
J. Magn. Magn. Mater.
,
421
(
Suppl. C
), pp.
165
176
.
9.
Liu
,
Y.
,
2016
, “
Integrating Continuous and Digital Microfluidics in Electrowetting-on-Dielectrics (EWOD) for Heterogeneous Immunoassay
,”
Ph.D. dissertation
, University of Cincinnati, Cincinnati, OH.
10.
Young
,
P. M.
, and
Mohseni
,
K.
,
2008
, “
Calculation of Dep and Ewod Forces for Application in Digital Microfluidics
,”
ASME J. Fluids Eng.
,
130
(
8
), p.
081603
.
11.
Pooyan
,
S.
, and
Passandideh-Fard
,
M.
,
2012
, “
On a Numerical Model for Free Surface Flows of a Conductive Liquid Under an Electrostatic Field
,”
ASME J. Fluids Eng.
,
134
(
9
), p.
091205
.
12.
Mugele
,
F.
, and
Baret
,
J.-C.
,
2005
, “
Electrowetting: From Basics to Applications
,”
J. Phys.: Condens. Matter
,
17
(
28
), pp.
R705
R774
.
13.
Zhao
,
Y.-P.
, and
Wang
,
Y.
,
2013
, “
Fundamentals and Applications of Electrowetting
,”
Rev. Adhes. Adhes.
,
1
(
1
), pp.
114
174
.
14.
Nelson
,
W. C.
, and
Kim
,
C.-J. C.
,
2012
, “
Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review
,”
J. Adhes. Sci. Technol.
,
26
(
12–17
), pp.
1747
1771
.
15.
Mibus
,
M.
, and
Zangari
,
G.
,
2017
, “
Performance and Reliability of Electrowetting-on-Dielectric (EWOD) Systems Based on Tantalum Oxide
,”
ACS Appl. Mater. Interfaces
,
9
(
48
), pp.
42278
42286
.
16.
Song
,
J.
,
Evans
,
R.
,
Lin
,
Y.-Y.
,
Hsu
,
B.-N.
, and
Fair
,
R.
,
2009
, “
A Scaling Model for Electrowetting-on-Dielectric Microfluidic Actuators
,”
Microfluid. Nanofluid.
,
7
(
1
), pp.
75
89
.
17.
Chen
,
C.-H.
,
Tsai
,
S.-L.
,
Chen
,
M.-K.
, and
Jang
,
L.-S.
,
2011
, “
Effects of Gap Height, Applied Frequency, and Fluid Conductivity on Minimum Actuation Voltage of Electrowetting-on-Dielectric and Liquid Dielectrophoresis
,”
Sens. Actuators B: Chem.
,
159
(
1
), pp.
321
327
.
18.
Guan
,
Y.
,
Tong
,
A. Y.
,
Nikapitiya
,
N. J. B.
, and
Moon
,
H.
,
2016
, “
Numerical Modeling of Microscale Droplet Dispensing in Parallel-Plate Electrowetting-on-Dielectric (EWOD) Devices With Various Reservoir Designs
,”
Microfluid. Nanofluid.
,
20
(
2
), pp.
1
21
.
19.
Nikapitiya
,
N. J. B.
,
Nahar
,
M. M.
, and
Moon
,
H.
,
2017
, “
Accurate, Consistent, and Fast Droplet Splitting and Dispensing in Electrowetting on Dielectric Digital Microfluidics
,”
Micro Nano Syst. Lett.
,
5
(
1
), p.
24
.
20.
Yamamoto
,
Y.
,
Ito
,
T.
,
Wakimoto
,
T.
, and
Katoh
,
K.
,
2018
, “
Numerical and Theoretical Analyses of the Dynamics of Droplets Driven by Electrowetting on Dielectric in a Hele-Shaw Cell
,”
J. Fluid Mech.
,
839
, pp.
468
488
.
21.
Shabani
,
R.
, and
Cho
,
H. J.
,
2011
, “
A Micropump Controlled by Ewod: Wetting Line Energy and Velocity Effects
,”
Lab Chip
,
11
(
20
), pp.
3401
3403
.
22.
Shabani
,
R.
, and
Cho
,
H. J.
,
2013
, “
Active Surface Tension Driven Micropump Using Droplet/Meniscus Pressure Gradient
,”
Sens. Actuators B: Chem.
,
180
, pp.
114
121
.
23.
Shabani
,
R.
, and
Cho
,
H. J.
,
2013
, “
Flow Rate Analysis of an Ewod-Based Device: How Important are Wetting-Line Pinning and Velocity Effects?
,”
Microfluid. Nanofluid.
,
15
(
5
), pp.
587
597
.
24.
Kedzierski
,
J.
,
Berry
,
S.
, and
Abedian
,
B.
,
2009
, “
New Generation of Digital Microfluidic Devices
,”
J. Microelectromech. Syst.
,
18
(
4
), pp.
845
851
.
25.
Jenkins
,
J.
, and
Kim
,
C.
,
2012
, “
Generation of Pressure by Ewod-Actuated Droplets
,”
Solid-State Sensors, Actuators, and Microsystems Workshop
, Hilton Head Island, SC, June 3–7, pp.
145
148.
26.
Paknahad
,
M.
,
Nejad
,
H. R.
, and
Hoorfar
,
M.
,
2014
, “
Development of a Digital Micropump With Controlled Flow Rate for Microfluidic Platforms
,”
Sens. Transducers
,
183
(
12
), pp.
84
89
.
27.
Berry
,
S.
,
2008
, “
Electrowetting Phenomenon for Microsized Fluidic Devices
,”
Ph.D. dissertation
, Tufts University, Medford, MA.
28.
Kedzierski
,
J.
,
Meng
,
K.
,
Thorsen
,
T.
,
Cabrera
,
R.
, and
Berry
,
S.
,
2016
, “
Microhydraulic Electrowetting Actuators
,”
J. Microelectromech. Syst.
,
25
(
2
), pp.
394
400
.
29.
Hsu
,
T.-H.
,
Taylor
,
J.
, and
Krupenkin
,
T.
,
2017
, “
Energy Harvesting From Aperiodic Low-Frequency Motion Using Reverse Electrowetting
,”
Faraday Discuss.
,
199
, pp.
377
392
.
30.
Shang
,
L.
,
Cheng
,
Y.
, and
Zhao
,
Y.
,
2017
, “
Emerging Droplet Microfluidics
,”
Chem. Rev.
,
117
(
12
), pp.
7964
8040
.
31.
He
,
K. M.
,
2015
, “
Droplet Formation on Demand at a Microfluidic T-Junction
,”
Ph.D. dissertation
, University of British Columbia, Vancouver, BC, Canada.
32.
Pit
,
A. M.
,
Ruiter
,
R. D.
,
Kumar
,
A.
,
Wijnperlé
,
D.
,
Duits
,
M. H. G.
, and
Mugele
,
F.
,
2015
, “
High-Throughput Sorting of Drops in Microfluidic Chips Using Electric Capacitance
,”
Biomicrofluidics
,
9
(
4
), p.
044116
.
33.
Satoh
,
W.
,
Yokomaku
,
H.
,
Hosono
,
H.
,
Ohnishi
,
N.
, and
Suzuki
,
H.
,
2008
, “
Electrowetting-Based Valve for the Control of the Capillary Flow
,”
J. Appl. Phys.
,
103
(
3
), p.
034903
.
34.
Ody
,
C. P.
,
2010
, “
Capillary Contributions to the Dynamics of Discrete Slugs in Microchannels
,”
Microfluid. Nanofluid.
,
9
(
2–3
), pp.
397
410
.
35.
Bahadur
,
V.
, and
Garimella
,
S.
,
2006
, “
An Energy-Based Model for Electrowetting-Induced Droplet Actuation
,”
J. Micromech. Microeng.
,
16
(
8
), p.
1494
.
36.
Cho
,
S. K.
,
Moon
,
H.
, and
Kim
,
C.-J.
,
2003
, “
Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits
,”
Microelectromech. Syst., J.
,
12
(
1
), pp.
70
80
.
37.
Bahrami
,
M.
,
Yovanovich
,
M.
, and
Culham
,
J.
,
2006
, “
Pressure Drop of Fully-Developed, Laminar Flow in Microchannels of Arbitrary Cross-Section
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1036
1044
.
38.
Berthier
,
J.
,
2012
,
Micro-Drops and Digital Microfluidics
,
William Andrew
, Norwich, NY.
39.
Sen
,
P.
, and
Chang-Jin
,
K.
,
2009
, “
A Fast Liquid-Metal Droplet Microswitch Using EWOD-Driven Contact-Line Sliding
,”
Microelectromech. Syst., J.
,
18
(
1
), pp.
174
185
.
40.
Wan
,
Z.
,
Zeng
,
H.
, and
Feinerman
,
A.
,
2007
, “
Reversible Electrowetting of Liquid-Metal Droplet
,”
ASME J. Fluids Eng.
,
129
(
4
), p.
388
.
41.
Berthier
,
J.
,
Dubois
,
P.
,
Clementz
,
P.
,
Claustre
,
P.
,
Peponnet
,
C.
, and
Fouillet
,
Y.
,
2007
, “
Actuation Potentials and Capillary Forces in Electrowetting Based Microsystems
,”
Sens. Actuators A: Phys.
,
134
(
2
), pp.
471
479
.
42.
Schneemilch
,
M.
,
Hayes
,
R. A.
,
Petrov
,
J. G.
, and
Ralston
,
J.
,
1998
, “
Dynamic Wetting and Dewetting of a Low-Energy Surface by Pure Liquids
,”
Langmuir: ACS J. Surf. Colloids
,
14
(
24
), pp.
7047
7051
.
You do not currently have access to this content.