Swirl inlet distortion is usually encountered in modern flight vehicles since their inlet ducts usually consist of one or two bends, such as S-inlet duct. An experimental device is first designed to simulate the swirl inlet distortion and then used to test the effectiveness of a novel casing treatment (CT) on a low-speed compressor under the swirl distortions of various intensities. The influences of co- and counter-rotating swirl inlet distortion on the test compressor and the stabilization ability of this novel CT are well demonstrated by the illustrations of static pressure rise curves and efficiency curves. The dynamic prestall pressure signals are also captured to reflect the perturbation energy in the flow field through which the mechanism of the novel CT will be indicated. The relevant results show that counter-rotating swirl distortion in small intensity could increase the compressive ability of compressor with small efficiency loss, and the co-rotating swirl distortion always brings about detrimental effects on compressor performance. At the same time, the distortion of twin swirls can cause nonuniform total pressure profile which can seriously damage the compressor performance. Besides, the stall precursor-suppressed (SPS) CT shows a good capability of stall margin (SM) enhancement no matter what swirl inlet distortions are encountered in the test compressor.

References

1.
Seddon
,
J.
, and
Goldsmith
,
E. L.
,
1999
,
Intake Aerodynamics
(AIAA education series), 2nd ed.,
E. L.
Goldsmith
, ed.,
American Institute of Aeronautics and Astronautics
, Oxford, UK.
2.
Guo
,
R. W.
, and
Seddon
,
J.
,
1983
, “
The Swirl in an S-Duct of Typical Air Intake Proportions
,”
Aeronaut. Q.
,
34
(
2
), pp.
99
129
.
3.
Guo
,
R. W.
, and
Seddon
,
J.
,
1983
, “
Swirl Characteristics of an S-Shaped Air Intake With Both Horizontal and Vertical Offsets
,”
Aeronaut. Q.
,
34
(
2
), pp.
130
146
.
4.
Anderson
,
B. H.
,
Reddy
,
D. R.
, and
Kapoor
,
K.
,
1993
, “
A Comparative Study of Full Navier-Stokes and Reduced Navier-Stokes Analyses for Separating Flows Within a Diffusing Inlet S-Duct
,”
AIAA
Paper No. AIAA-93-2154.
5.
Anderson
,
B. H.
,
Reddy
,
D. R.
, and
Kapoor
,
K.
,
1994
, “
Study on Computing Separating Flows Within a Diffusion Inlet S-Duct
,”
AIAA J. Propul. Power
,
10
(
5
), pp.
661
667
.
6.
Steven
,
R. W.
,
Bruce
,
A. R.
, and
Theodore
,
H. O.
,
1994
, “
Study of the Compressible Flow in a Diffusing S-Duct
,”
AIAA J. Propul. Power
,
10
(
5
), pp.
668
675
.
7.
Pazur
,
W. W.
, and
Fottner
,
L. L.
,
1991
, “
The Influence of Inlet Swirl Distortions on the Performance of a Jet Propulsion Two-Stage Axial Compressor
,”
ASME J. Turbomach.
,
113
(
2
), pp.
233
240
.
8.
Govardhan
,
M.
, and
Viswanath
,
K.
,
1997
, “
Investigations on an Axial Flow Fan Stage Subjected to Circumferential Inlet Flow Distortion and Swirl
,”
J. Therm. Sci.
,
4
(
4
), p.
241
.
9.
Schmid
,
N. R.
,
Leinhos
,
D. C.
, and
Fottner
,
L.
,
2000
, “
Steady Performance Measurements of a Turbofan Engine With Inlet Distortions Containing Co- and Counter-Rotating Swirl From an Intake Diffuser for Hypersonic Flight
,”
ASME
Paper No. 2000-GT-0011.
10.
Sheoran
,
Y.
,
Bouldin
,
B.
, and
Krishnan
,
P.
,
2011
, “
Compressor Performance and Operability in Swirl Distortion
,”
ASME J. Turbomach.
,
134
(
4
), p.
041008
.
11.
Shusser
,
M.
,
Ramus
,
A.
, and
Gendelman
,
O.
,
2016
, “
Instability of a Curved Pipe Flow With a Sudden Expansion
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011203
.
12.
Plesniak
,
M. W.
, and
Bulusu
,
K. V.
,
2016
, “
Morphology of Secondary Flows in a Curved Pipe With Pulsatile Inflow
,”
ASME J. Fluids Eng.
,
138
(
10
), p.
101203
.
13.
Granata
,
J. J.
,
Xu
,
L.
,
Rusak
,
Z. Z.
, and
Wang
,
S.
,
2016
, “
A Numerical Simulation Algorithm of the Inviscid Dynamics of Axisymmetric Swirling Flows in a Pipe
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091402
.
14.
Fernández Oro
,
J.
,
Argüelles Díaz
,
K.
,
Santolaria Morros
,
C.
, and
Blanco Marigorta
,
E.
,
2007
, “
Unsteady Flow and Wake Transport in a Low-Speed Axial Fan With Inlet Guide Vanes
,”
ASME J. Fluids Eng.
,
129
(
8
), pp.
1015
1029
.
15.
Koch
,
C. C.
,
1970
, “
Experimental Evaluation of Outer Case Blowing or Bleeding of a Single-Stage Axial Flow Compressor
,” General Electric Co., Aircraft Engine Group., Lynn, MA, Report No.
NASA CR-54592
.
16.
Takata
,
H.
, and
Tsukuda
,
Y.
,
1977
, “
Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
121
133
.
17.
Muller
,
M. W.
,
Schier
,
H. P.
,
Voges
,
M.
, and
Hah
,
C.
,
2011
, “
Investigation of Passage Flow Features in a Transonic Compressor Rotor With Casing Treatments
,”
ASME
Paper No. GT 2011-45364.
18.
Kroeckel
,
T.
,
Hiller
,
S. J.
, and
Jeschke
,
P.
,
2011
, “
Application of a Multistage Casing Treatment in a High Speed Axial Compressor Test Rig
,”
ASME
Paper No. GT2011-46315.
19.
Madden
,
D. S.
, and
West
,
M. A.
,
2005
, “
Effects of Inlet Distortion on the Stability of an Advanced Military Swept Fan Stage With Casing Treatment
,”
ASME
Paper No. GT 2005-68693.
20.
Zambonini
,
G.
,
Ottavy
,
X.
, and
Kriegseis
,
J.
,
2017
, “
Corner Separation Dynamics in a Linear Compressor Cascade
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061101
.
21.
Liu
,
Y.
,
Yan
,
H.
,
Lu
,
L.
, and
Li
,
Q.
,
2016
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
.
22.
Sun
,
X.
,
Sun
,
D.
,
Liu
,
X.
,
Yu
,
W.
, and
Wang
,
X.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment, Part I: Methodology
,”
AIAA J. Propul. Power
,
30
(
5
), pp.
1224
1235
.
23.
Sun
,
D.
,
Liu
,
X.
,
Jin
,
D.
,
Gui
,
X.
, and
Sun
,
X.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment—Part II: Experiment
,”
AIAA J. Propul. Power
,
30
(
5
), pp.
1236
1247
.
24.
Sun
,
D.
,
Liu
,
X.
, and
Sun
,
X.
,
2015
, “
An Evaluation Approach for the Stall Margin Enhancement With SPS Casing Treatment
,”
ASME J. Fluids Eng.
,
137
(
8
), p.
081102
.
25.
Sun
,
X.
,
1996
, “
On the Relation Between the Inception of Rotating Stall and Casing Treatment
,”
AIAA
, Lake Buena Vista, FL, Paper No. 96-2579.
26.
Sun
,
X.
,
Liu
,
X.
,
Hou
,
R.
, and
Sun
,
D.
,
2013
, “
A General Theory of Flow Instability Inception in Turbomachinery
,”
AIAA J.
,
51
(
7
), pp.
1675
1687
.
27.
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2014
, “
Basic Studies of Flow-Instability Inception in Axial Compressors Using Eigenvalue Method
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
031102
.
28.
Rusak
,
Z.
, and
Morris
,
W. J.
,
2011
, “
Stall Onset on Airfoils at Moderately High Reynolds Number Flows
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111104
.
29.
Sun
,
X.
,
Sun
,
D.
, and
Yu
,
W.
,
2011
, “
Model to Predict Stall Inception of Transonic Axial Flow Fan/Compressors
,”
Chin. J. Aeronaut.
,
24
(
6
), pp.
687
700
.
30.
Dong
,
X.
,
Sun
,
D.
,
Li
,
F.
,
Jin
,
D.
,
Gui
,
X.
, and
Sun
,
X.
,
2015
, “
Effects of Rotating Inlet Distortion on Compressor Stability With SPS Casing Treatment
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111101
.
31.
Li
,
F.
,
Li
,
J.
,
Dong
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2017
, “
Influence of SPS Casing Treatment on Axial Flow Compressor Subjected to Radial Pressure Distortion
,”
Chin. J. Aeronaut.
,
30
(
2
), pp.
685
697
.
32.
Sun
,
D.
,
Dong
,
X.
,
Li
,
F.
, and
Sun
,
X.
,
2015
, “
Effects of Novel Casing Treatment on a Low–Speed Axial Compressor With Circumferential Pressure Distortion
,”
14th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines (ISUAAAT14)
, Stockholm, Sweden, Sept. 7–11, Paper No. I14-S3-4.
33.
Jing
,
X.
, and
Sun
,
X.
,
1999
, “
Experimental Investigations of Perforated Liners With Bias Flow
,”
J. Acoust. Soc. Am.
,
106
(
5
), pp.
2436
2441
.
34.
Jing
,
X.
, and
Sun
,
X.
,
2000
, “
Effect of Plate Thickness on Impedance of Perforated Plates With Bias Flow
,”
AIAA J.
,
38
(
9
), pp.
1573
1578
.
35.
Jing
,
X.
,
Sun
,
X.
,
Wu
,
J.
, and
Meng
,
K.
,
2001
, “
Effect of Grazing Flow on the Acoustic Impedance of an Orifice
,”
AIAA J.
,
39
(
8
), pp.
1478
1484
.
36.
Sun
,
X.
,
Jing
,
X.
,
Zhang
,
H.
, and
Shi
,
Y.
,
2002
, “
Effect of Grazing-Bias Flow Interaction on Acoustic Impedance of Perforated Plates
,”
J. Sound Vib.
,
254
(
3
), pp.
557
573
.
37.
Howe
,
M. S.
,
2002
,
Theory of Vortex Sound
,
Cambridge University Press
,
New York
, pp.
13
14
.
38.
Jing
,
X.
, and
Sun
,
X.
,
2002
, “
Sound-Excited Flow and Acoustic Nonlinearity at an Orifice
,”
Phys. Fluids
,
14
(
1
), pp.
268
276
.
You do not currently have access to this content.