Water removal and behavior, in proton exchange membrane fuel cell (PEMFC) gas flow channel has been investigated in this work. Single serpentine gas flow channel has been simulated. Hydrodynamics of water drops in a serpentine channel are studied as a function of nature of gas diffusion layer (GDL) surface wettability. In one case, the surface becomes gradually hydrophobic starting from 90 deg to 170 deg. In this second case, the value of contact angle reduces to 10 deg. A three-dimensional model has been developed by using cfd software. Two different drop of diameter 0.2 mm and 0.4 mm are simulated for all the cases. It is observed that, water coverage is always lesser for a gradual hydrophobic surface. Also at low air velocity and gradual hydrophobic GDL surface results in lesser pressure drop as well as water coverage.

References

References
1.
Anderson
,
R.
,
Mauricio
,
B.
,
Xiaotao
,
B.
, and
Wilkinson
,
D. P.
,
2012
, “
Anode Water Removal and Cathode Gas Diffusion Layer Flooding in a Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16093
16103
.
2.
Quan
,
P.
,
Zhou
,
B.
,
Sobiesiak
,
A.
, and
Liu
,
Z.
,
2005
, “
Water Behavior in Serpentine Micro-Channel for Proton Exchange Membrane Fuel Cell Cathode
,”
J. Power Sources
,
152
(
1–2
), pp.
131
145
.
3.
Banerjee
,
R.
, and
Kandlikar
,
S. G.
,
2014
, “
Liquid Water Quantification in the Cathode Side Gas Channels of a Proton Exchange Membrane Fuel Cell Through Two-Phase Flow Visualization
,”
J. Power Sources
,
247
, pp.
9
19
.
4.
Bozorgnezhad
,
A.
,
Shams
,
M.
,
Kanani
,
H.
,
Hasheminasab
,
M.
, and
Ahmadi
,
G.
,
2015
, “
The Experimental Study of Water Management in the Cathode Channel of Single-Serpentine Transparent Proton Exchange Membrane Fuel Cell by Direct Visualization
,”
Int. J. Hydrogen Energy
,
40
(
6
), pp.
2808
2832
.
5.
Chen
,
Y.-S.
, and
Peng
,
H.
,
2009
, “
Studying the Water Transport in a Proton Exchange Membrane Fuel Cell by Neutron Radiography and Relative Humidity Sensors
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
3
), p.
031016
.
6.
Gopalan
,
P.
, and
Kandlikar
,
S. G.
,
2014
, “
Modeling Dynamic Interaction Between an Emerging Water Droplet and the Sidewall of a Trapezoidal Channel
,”
Colloids Surf. A
,
441
, pp.
262
274
.
7.
Hartnig
,
C.
,
Manke
,
I.
,
Kuhn
,
R.
,
Kardjilov
,
N.
,
Banhart
,
J.
, and
Lehnert
,
W.
,
2008
, “
Cross-Sectional Insight in the Water Evolution and Transport in Polymer Electrolyte Fuel Cells
,”
Appl. Phys. Lett.
,
92
(
13
), p. 134106.
8.
Iranzo
,
A.
,
Pierre
,
B.
,
Johannes
,
B.
, and
Antonio
,
S.
,
2015
, “
Investigation of the Liquid Water Distributions in a 50 cm2 PEM Fuel Cell: Effects of Reactants Relative Humidity, Current Density, and Cathode Stoichiometry
,”
Energy
,
82
, pp.
914
921
.
9.
Iranzo
,
A.
,
Boillat
,
P.
,
Biesdorf
,
J.
,
Tapia
,
E.
,
Salva
,
A.
, and
Guerra
,
J.
,
2014
, “
Liquid Water Preferential Accumulation in Channels of PEM Fuel Cells With Multiple Serpentine Flow Fields
,”
Int. J. Hydrogen Energy
,
39
(
28
), pp.
15687
15695
.
10.
Manke
,
I.
,
Hartnig
,
C.
,
Grünerbel
,
M.
,
Lehnert
,
W.
,
Kardjilov
,
N.
,
Haibel
,
A.
,
Hilger
,
A.
,
Banhart
,
J.
, and
Riesemeier
,
H.
,
2007
, “
Investigation of Water Evolution and Transport in Fuel Cells With High Resolution Synchrotron X-Ray Radiography
,”
Appl. Phys. Lett.
,
90
(
17
), p. 174105.
11.
Manke
,
I.
,
Hartnig
,
C.
,
Kardjilov
,
N.
,
Messerschmidt
,
M.
,
Hilger
,
A.
,
Strobl
,
M.
, and
Banhart
,
J.
,
2008
, “
Characterization of Water Exchange and Two-Phase Flow in Porous Gas Diffusion Materials by Hydrogen-Deuterium Contrast Neutron Radiography
,”
Appl. Phys. Lett.
,
92
(
24
), p.
244101
.
12.
Li
,
H.
,
Tang
,
Y.
,
Wang
,
Z.
,
Shi
,
Z.
,
Wu
,
S.
,
Song
,
D.
,
Zhang
,
J.
,
Fatih, K.
,
Zhang, J.
,
Wang, H.
,
Liu, Z
.,
Abouatallah, R.
, and
Mazza, A.
,
2008
, “
A Review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
178
(
1
), pp.
103
117
.
13.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2000
, “
Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells
,”
J. Appl. Electrochem.
,
30
(
2
), pp.
135
146
.
14.
Cai
,
Y. H.
,
Hu
,
J.
,
Ma
,
H. P.
,
Yi
,
B. L.
, and
Zhang
,
H. M.
,
2006
, “
Effects of Hydrophilic/Hydrophobic Properties on the Water Behavior in the Micro-Channels of a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
161
(
2
), pp.
843
848
.
15.
Cai
,
Y.
,
Yang
,
T.
,
Sui
,
P. C.
, and
Xiao
,
J.
,
2016
, “
A Numerical Investigation on the Effects of Water Inlet Location and Channel Surface Properties on Water Transport in PEMFC Cathode Channels
,”
Int. J. Hydrogen Energy
,
41
(
36
), pp.
16220
16229
.
16.
Molaeimanesh
,
G. R.
, and
Akbari
,
M. H.
,
2016
, “
Role of Wettability and Water Droplet Size During Water Removal From a PEMFC GDL by Lattice Boltzmann Method
,”
Int. J. Hydrogen Energy
,
41
(
33
), pp.
14872
14884
.
17.
Jiao
,
K.
, and
Zhou
,
B.
,
2008
, “
Effects of Electrode Wettabilities on Liquid Water Behaviours in PEM Fuel Cell Cathode
,”
J. Power Sources
,
175
(
1
), pp.
106
119
.
18.
Jiao
,
K.
,
Zhou
,
B.
, and
Quan
,
P.
,
2006
, “
Liquid Water Transport in Straight Micro-Parallel-Channels With Manifolds for PEM Fuel Cell Cathode
,”
J. Power Sources
,
157
(
1
), pp.
226
243
.
19.
Jiao
,
K.
,
Zhou
,
B.
, and
Quan
,
P.
,
2006
, “
Liquid Water Transport in Parallel Serpentine Channels With Manifolds on Cathode Side of a PEM Fuel Cell Stack
,”
J. Power Sources
,
154
(
1
), pp.
124
137
.
20.
Song
,
M.
,
Kim
,
H.-Y.
, and
Kim
,
K.
,
2014
, “
Effects of Hydrophilic/Hydrophobic Properties of Gas Flow Channels on Liquid Water Transport in a Serpentine Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
34
), pp.
19714
19721
.
21.
Kim
,
J. H.
,
Lee
,
G. G.
, and
Kim
,
W. T.
,
2017
, “
Comparison of Liquid Water Dynamics in Bent Gas Channels of a Polymer Electrolyte Membrane Fuel Cell With Different Channel Cross Sections in a Channel Flooding Situation
,”
Energies
,
10
(
12
), p.
748
.
22.
Greenspan
,
H. P.
,
1978
, “
On the Motion of a Small Viscous Droplet That Wets a Surface
,”
J. Fluid Mech.
,
84
(
1
), pp.
125
143
.
23.
Chaudhury
,
M. K.
, and
Whitesides
,
G. M.
,
1992
, “
How to Make Water Run Uphill
,”
Science
,
256
(
5063
), pp.
1539
1541
.
24.
Daniel
,
S.
, and
Chaudhury
,
M. K.
,
2002
, “
Rectified Motion of Liquid Drops on Gradient Surfaces Induced by Vibration
,”
Langmuir
,
18
(
9
), pp.
3404
3407
.
25.
Daniel
,
S.
,
Sircar
,
S.
,
Gliem
,
J.
, and
Chaudhury
,
M. K.
,
2004
, “
Ratcheting Motion of Liquid Drops on Gradient Surfaces
,”
Langmuir
,
20
(
10
), pp.
4085
4092
.
26.
Suda
,
H.
, and
Yamada
,
S.
,
2003
, “
Force Measurements for the Movement of a Water Drop on a Surface With a Surface Tension Gradient
,”
Langmuir
,
19
(
3
), pp.
529
531
.
27.
ANSYS
,
2013
,
ANSYS FLUENT Theory Guide
,
ANSYS, Inc.
,
Canonsburg, PA
.
28.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
29.
Iliev
,
S. D.
,
1997
, “
Static Drops on an Inclined Plane: Equilibrium Modeling and Numerical Analysis
,”
J. Colloid Interface Sci.
,
194
(
2
), pp.
287
300
.
30.
Zhenyu
,
S.
,
Zhanqiang
,
L.
,
Hao
,
S.
, and
Xianzhi
,
Z.
,
2016
, “
Prediction of Contact Angle for Hydrophobic Surface Fabricated With Micro-Machining Based on Minimum Gibbs Free Energy
,”
Appl. Surf. Sci.
,
364
, pp.
597
603
.
You do not currently have access to this content.