This paper describes a numerical simulation of the interaction of a single nonlinear wave with a solid vertical surface in three dimensions. A coupled volume of fluid (VOF) and level set method (LSM) is used to simulate the wave-body interaction. A Cartesian-grid method is used to model immersed solid boundaries with constant grid spacing for simplicity and lower storage requirements. Mesh refinement is implemented near the wall boundaries due to the complex behavior of the free surface around the body. The behavior of the wave impact, the water sheet, and the high-speed jet arising from the wave impact are all captured with these methods. The numerical scheme is implemented using parallel computing due to the high central processing unit and memory requirements of this simulation. The maximum wave run-up velocity, instant wave run-up velocity in front of the vertical surface, the sheet break-up length, and the maximum impact pressure are computed for several input wave characteristics. Results are compared with a laboratory experiment that was carried out in a tow tank in which several generated waves were impacted with a fixed flat-shaped plate model. The numerical and experimental data on sheet breakup length are further compared with an analytical linear stability model for a viscous liquid sheet, and good agreement is achieved. The comparison between the numerical model and the experimental measurements of pressure, the wave run-up velocity, and the break-up length in front of the plate model shows good agreement.

References

References
1.
Hu
,
C.
, and
Kashiwagi
,
M.
,
2009
, “
Two-Dimensional Numerical Simulation and Experiment on Strongly Nonlinear Wave-Body Interactions
,”
J. Mar. Sci. Technol.
,
14
(
2
), pp.
200
213
.
2.
Greco
,
M.
,
Colicchio
,
G.
,
Lugni
,
C.
, and
Faltinsen
,
O. M.
,
2013
, “
3D Domain Decomposition for Violent Wave-Ship Interaction
,”
Int. J. Numer. Methods Eng.
,
95
(
8
), pp.
661
684
.
3.
Roebber
,
P.
, and
Mitten
,
P.
,
1987
, “
Modeling and Measurement of Icing in Canadian Waters
,” Canadian Climate Centre, Gatineau QC, Canada, Report No. 87-15.
4.
Lozowski
,
E. P.
, and
Zakrzewski
,
W. P.
,
1993
, “
Topside Ship Icing System
,” US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, Contract Report No. DACA89-88-K-0018.
5.
Ryerson
,
C.
,
2013
, “
Icing Management for Coast Guard Assets
,” U.S. Army Engineer Research and Development Center, Hanover, NH, Report No.
ERDC/CRREL TR-13-7
.
6.
Bodaghkhani
,
A.
,
Dehghani
,
S. R.
,
Muzychka
,
S. Y.
, and
Colbourne
,
B.
,
2016
, “
Understanding Spray Cloud Formation by Wave Impact on Marine Objects
,”
Cold Reg. Sci. Technol.
,
129
, pp.
114
136
.
7.
Hendrickson
,
K.
,
Shen
,
L.
,
Yue
,
D. K. P.
,
Dommermuth
,
D. G.
, and
Adams
,
P.
,
2003
, “
Simulation of Steep Breaking Waves and Spray Sheets Around a Ship: The Last Frontier in Computational Ship Hydrodynamics
,”
User Group Conference
, Bellevue, WA, June 9–13, pp.
200
205
.
8.
Zakrzewski
,
W. P.
,
1987
, “
Splashing a Ship With Collision-Generated Spray
,”
Cold Reg. Sci. Technol.
,
14
(
1
), pp.
65
83
.
9.
Dommermuth
,
D. G.
,
O'Shea
,
T. T.
,
Wyatt
,
D. C.
,
Sussman
,
M.
,
Weymouth
,
G. D.
,
Yue
,
D. K.
,
Adams
,
P.
, and
Hand
,
R.
,
2006
, “
The Numerical Simulation of Ship Waves Using Cartesian-Grid and Volume-of-Fluid Methods
,”
26th Symposium on Naval Hydrodynamics
, Rome, Italy, Sept. 17–22.
10.
Watanabe
,
Y.
, and
Ingram
,
D. M.
,
2016
, “
Size Distribution of Sprays Produced by Violent Wave Impacts 795 on Vertical Sea Walls
,”
Proc. R. Soc. A.
,
472
(
2194
), p.
20160423
.
11.
Chan
,
E. S.
, and
Melville
,
W. K.
,
1988
, “
Deep-Water Plunging Wave Pressure on a Vertical Plane Wall
,”
Proc. R. Soc. A
,
417
(
1852
), pp.
95
131
.
12.
Yu
,
X.
, and
Yeung
,
R. W.
,
1995
, “
Interaction of Transient Waves With a Circular Surface-Piercing Body
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
382
388
.
13.
Kleefsman
,
K. M. T.
,
Fekken
,
G.
,
Veldman
,
A. E. P.
,
Iwanowski
,
B.
, and
Buchner
,
B.
,
2005
, “
A Volume of Fluid Based Simulation Method for Wave Impact Problems
,”
J. Comput. Phys.
,
206
(
1
), pp.
363
393
.
14.
Fullerton
,
A. M.
,
Fu
,
T. C.
, and
Ammeen
,
E.
,
2009
, “
Distribution of Wave Impact Forces From Breaking and Non-Breaking Waves
,”
ASME
Paper No. OMAE2009-79978.
15.
Watanabe
,
Y.
, and
Ingram
,
D. M.
,
2015
, “
Transverse Instabilities of Ascending Planar Jets Formed by Wave Impacts on Vertical Walls
,”
Proc. R. Soc. A
,
471
(
2182
), p.
20150397
.
16.
Derakhti
,
M.
, and
Kirby
,
J. T.
,
2014
, “
Bubble Entrainment and Liquid-Bubble Interaction Under Unsteady Breaking Waves
,”
J. Fluid Mech.
,
761
, pp.
464
506
.
17.
Nichita
,
B. A.
,
Zun
,
I.
, and
Thome
,
J. R.
,
2010
, “
A Level Set Method Coupled With a Volume of Fluid Method for Modeling of Gas-Liquid Interface in Bubbly Flow
,”
ASME J. Fluids Eng.
,
132
(
8
), p. 081302.
18.
Bodaghkhani
,
A.
,
Muzychka
,
Y. S.
, and
Colbourne
,
B.
,
2017
, “
A Scaling Model for Droplet Characteristics in a Spray Cloud Arising From Wave Interactions With Marine Objects
,”
ASME
Paper No. OMAE2017-61322.
19.
Sussman
,
M.
, and
Puckett
,
E.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.
20.
Wang
,
Z.
,
Jianming
,
Y.
,
Koo
,
B.
, and
Stern
,
F.
,
2009
, “
A Coupled Level Set and Volume-of-Fluid Method for Sharp Interface Simulation of Plunging Breaking Waves
,”
Int. J. Multiphase Flow
,
35
(
3
), pp.
227
246
.
21.
Young
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods in Fluid Dynamics
,
K. W.
Morton
and
M. J.
Baines
, eds.,
Academic Press
, New York, pp.
273
285
.
22.
Mukaro
,
R. R.
,
Govender
,
K. K.
, and
McCreadie
,
H. H.
,
2013
, “
Wave Height and Wave Velocity Measurements in the Vicinity of the Break Point in Laboratory Plunging Waves
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061303
.
23.
Greco
,
M.
, and
Lugni
,
C.
,
2012
, “
3-D Seakeeping Analysis With Water on Deck and Slamming. Part 1: Numerical Solver
,”
J. Fluids Struct.
,
33
, pp. 127–147.
24.
Buchner
,
B.
,
van der Schaaf
,
H.
, and
Hoefakker
,
K.
,
2010
, “
Pilot Model Tests on the ‘Green Water Concept’ for Wave Energy Conversion With Model Scale Power Take-Off (PTO) Modeling
,”
ASME
Paper No. OMAE2010-20484.
25.
Bodaghkhani
,
A.
,
Dowdell
,
J.
,
Colbourne
,
B.
,
Muzychka
,
Y. S.
, and
Natarer
,
G. F.
,
2018
, “
Measurement of Spray-Cloud Characteristics With Bubble Image Velocimetry for Breaking Wave Impacts
,”
Cold Reg. Sci. Technol.
,
145
, pp.
52
64
.
26.
Dombrowski
,
N.
, and
Johns
,
W. R.
,
1963
, “
The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets
,”
Chem. Eng. Sci.
,
18
(
3
), pp.
203
214
.
27.
Li
,
X.
, and
Tankin
,
R. S.
,
1991
, “
On the Temporal Instability of a Two-Dimensional Viscous Liquid Sheet
,”
J. Fluid Mech.
,
226
(
1
), pp.
425
443
.
28.
Negeed
,
R.
,
Hidaka
,
S.
,
Hohno
,
M.
, and
Takata
,
Y.
,
2011
, “
Experimental and Analytical Investigation of Liquid Sheet Breakup Characteristics
,”
Int. J. Heat Fluid Flow.
,
32
(
1
), pp.
95
106
.
29.
Altieri
,
A.
,
Cryer
,
S. A.
, and
Acharya
,
L.
,
2014
, “
Mechanisms, Experiment, and Theory of Liquid Sheet Breakup and Drop Size From Agricultural Nozzles
,”
J. Atomization Sprays
,
24
(
8
), pp.
695
721
.
30.
Squire
,
H. B.
,
1953
, “
Investigation of the Instability of Moving Liquid Film
,”
Br. J. Appl. Phys.
,
4
(
6
), pp.
167
169
.
31.
Altimira
,
M.
,
Rivas
,
A.
,
Ramos
,
J. C.
, and
Anton
,
R.
,
2010
, “
Linear Spatial Instability of Viscous Flow of a Liquid Sheet Through Gas
,”
Phys. Fluids
,
22
(7), p. 074103.
32.
Ashgriz
,
N.
,
Li
,
X.
, and
Sarchami
,
A.
,
2011
, “
Instability of Liquid Sheets
,”
Handbook of Atomization and Sprays
,
N.
Ashgriz
, ed.,
Springer
,
Boston, MA
.
33.
Siddharth
,
K. S.
,
Panchagnula
,
M. V.
, and
John Tharakan
,
T. T.
,
2017
, “
Feature Correlation Velocimetry for Measuring Instantaneous Liquid Sheet Velocity
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091401
.
34.
Ferreira
,
V. G.
,
Mangiavacchi
,
N.
,
Tomé
,
M. F.
,
Castelo
,
A.
,
Cuminato
,
J. A.
, and
McKee
,
S.
,
2004
, “
Numerical Simulation of Turbulent Free Surface Flow With Two-Equation k–ε Eddy-Viscosity Models
,”
Int. J. Numer. Methods Fluids
,
44
(
4
), pp.
347
375
.
35.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k−ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids.
,
24
(
3
), pp.
227
238
.
36.
Durbin
,
P. A.
,
Medic
,
G. G.
,
Seo
,
J. M.
,
Eaton
,
J. K.
, and
Song
,
S. S.
,
2001
, “
Rough Wall Modification of Two-Layer k−ε
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
16
21
.
37.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
38.
Ming
,
P.
,
Jiao
,
Y.
,
Li
,
C.
, and
Zhang
,
W.
,
2013
, “
A Parallel VOF Method for Simulation of Water Impact on Rigid Structure
,”
Procedia Eng.
,
61
, pp.
306
314
.
39.
Aniszewski
,
W.
,
Ménard
,
T.
, and
Marek
,
M.
,
2014
, “
Volume of Fluid (VOF) Type Advection Methods in Two-Phase Flow: A Comparative Study
,”
Comput. Fluids
,
97
, pp.
52
73
.
40.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
41.
ANSYS
,
2009
, “
ANSYS Fluent 12.0 User's Guide
,” ANSYS, Inc., Canonsburg, PA.
42.
Leonard
,
B. P.
, and
Mokhtari
,
S.
,
1990
, “
ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TM-102568
.
43.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.
44.
Shu
,
C. W.
,
2009
, “
High Ordered Weighted Essentially Nonoscillatory Scheme for Convection Dominated Problems
,”
SIAM Rev.
,
51
(
1)
, pp.
82
126
.
45.
Fenton
,
J. D.
,
1985
, “
A Fifth-Order Stokes Theory for Steady Waves
,”
J. Waterw. Port Coastal Ocean Eng.
,
111
(
2
), pp.
216
234
.
46.
Fenton
,
J. D.
,
1990
,
Nonlinear Wave Theories, the Sea: Ocean Engineering Science
, Vol. 9,
B.
Le Méhauté
and
D. M.
Hanes
, eds.,
Wiley
,
New York
.
47.
Fullerton
,
A. M.
,
Fu
,
T. C.
, and
Brewton
,
S.
,
2010
, “
A Comparison of Measured and Predicted Wave-Impact Pressures From Breaking and Non-Breaking Waves
,”
28th International Conference on Naval Hydrodynamics
, Pasadena, CA, Sept. 12–17, pp. 1080–1094.
48.
Greco
,
M.
,
Bouscasse
,
B.
, and
Lugni
,
C.
,
2012
, “
3D Seakeeping Analysis With Water on Deck and Slamming. Part 2: Experiments and Physical Investigations
,”
J. Fluids Struct.
,
33
, pp. 148–179.
49.
LeTouzé
,
D.
,
Colagrossi
,
A.
, and
Colicchio
,
G.
,
2006
, “
Ghost Technique for Right Angles Applied to the Solution of Benchmarks 1 and 2
,”
First SPHERIC Workshop
, Rome, Italy.
50.
Kim
,
D.
,
Im
,
J.
,
Koh
,
H.
, and
Yoon
,
Y.
,
2007
, “
Effect of Ambient Gas Density on Spray Characteristics of Swirling Liquid Sheets
,”
J. Propul. Power
,
23
(
3
), pp.
603
611
.
You do not currently have access to this content.