The external characteristics of a superheated water jet released into water at ambient conditions are dominated by the vapor bubble formation, which results in an unsteady flow dynamics. This hinders the use of classical methods to assess the mean flow and the turbulence characteristics. Here, the proper orthogonal decomposition (POD) technique was employed on the velocity measurements obtained using particle image velocimetry (PIV) to quantify the external characteristics of a superheated water jet released into water. This was done at three different inlet pressure ratios. From the energy modes obtained using the POD technique, it was observed that the first mode well represents the mean flow, while subsequent higher modes show the fluctuating nature. The phase-averaged properties were calculated by considering only the first mode. Unlike a canonical jet, the maximum value of the mean centerline velocity for a superheated jet occurs far downstream from the nozzle, at x/D ≈ 15, due to the thermal nonequilibrium in the jet attributed to the formation of vapor bubbles. The turbulent kinetic energy (TKE), size of the coherent structures (CS), and swirling strength showed a nonmonotonic decrease in the downstream direction, indicating that the vapor formation has significant influence on the jet dynamics. The novel aspect of this work is the use of POD technique for phase averaging, using which dynamics of a superheated jet have been quantified. The distribution of vapor bubbles in the flow field was also measured using the Shadowgraphy technique to substantiate the above observations.

References

References
1.
Reynolds
,
W.
,
Parekh
,
D.
,
Juvet
,
P.
, and
Lee
,
M.
,
2003
, “
Bifurcating and Blooming Jets
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
295
315
.
2.
Sher
,
E.
,
Bar-Kohany
,
T.
, and
Rashkovan
,
A.
,
2008
, “
Flash-Boiling Atomization
,”
Prog. Energy Combust. Sci.
,
34
(
4
), pp.
417
439
.
3.
Mutair
,
S.
, and
Ikegami
,
Y.
,
2009
, “
Experimental Study on Flash Evaporation From Superheated Water Jets: Influencing Factors and Formulation of Correlation
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5643
5651
.
4.
Sinha
,
A.
,
Balasubramanian
,
S.
, and
Gopalakrishanan
,
S.
,
2015
, “
Internal and External Characteristics of a Superheated Jet
,”
Comput. Methods Multiphase Flow VIII
,
89
, pp.
225
236
.
5.
Cleary
,
V.
,
Bowen
,
P.
, and
Witlox
,
H.
,
2007
, “
Flashing Liquid Jets and Two-Phase Droplet Dispersion—I: Experiments for Derivation of Droplet Atomisation Correlations
,”
J. Hazardous Mater.
,
142
(
3
), pp.
786
796
.
6.
Zhou
,
Z.-F.
,
Wu
,
W.-T.
,
Wang
,
G.-X.
,
Gong
,
Z.
,
Chen
,
B.
,
Wang
,
Y.-S.
, and
Guo
,
L.-J.
,
2011
, “
Thermal Characteristics of Flashing Spray of Volatile r134a Cryogens
,”
ASME
Paper No. IMECE2011-65033.
7.
Zhang
,
M.
,
Xu
,
M.
,
Zhang
,
Y.
,
Zhang
,
G.
, and
Cleary
,
D. J.
,
2013
, “
Flow-Field Investigation of Multihole Superheated Sprays Using High-Speed PIV—Part II: Axial Direction
,”
Atomization Sprays
,
23
(
2
), pp. 119–140.
8.
Schmidt
,
D.
,
Gopalakrishnan
,
S.
, and
Jasak
,
H.
,
2010
, “
Multi-Dimensional Simulation of Thermal Non-Equilibrium Channel Flow
,”
Int. J. Multiphase Flow
,
36
(
4
), pp.
284
292
.
9.
Battistoni
,
M.
,
Som
,
S.
, and
Longman
,
D. E.
,
2014
, “
Comparison of Mixture and Multifluid Models for In-Nozzle Cavitation Prediction
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
061506
.
10.
Polanco
,
G.
,
Holdø
,
A. E.
, and
Munday
,
G.
,
2010
, “
General Review of Flashing Jet Studies
,”
J. Hazard. Mater.
,
173
(
1–3
), pp.
2
18
.
11.
Vu
,
H.
, and
Aguilar
,
G.
,
2009
, “
High-Speed Internal Nozzle Flow Visualization of Flashing Jets
,”
11th Triennial International Annual Conference on Liquid Atomization and Spray Systems
(
ICLASS
), Vail, CO, July 26–30.http://www.ee.ucr.edu/~gaguilar/PUBLICATIONS/P50.pdf
12.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases, Summer Program
, pp. 193–208.
13.
Li
,
S.
,
Zhang
,
Y.
,
Qi
,
W.
, and
Xu
,
B.
,
2017
, “
Quantitative Observation on Characteristics and Breakup of Single Superheated Droplet
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
305
312
.
14.
El-Fiqi
,
A. K.
,
Ali
,
N.
,
El-Dessouky
,
H.
,
Fath
,
H.
, and
El-Hefni
,
M.
,
2007
, “
Flash Evaporation in a Superheated Water Liquid Jet
,”
Desalination
,
206
(
1–3
), pp.
311
321
.
15.
Kravtsova
,
A. Y.
,
Markovich
,
D.
,
Pervunin
,
K.
,
Timoshevskiy
,
M.
, and
Hanjalić
,
K.
,
2014
, “
High-Speed Visualization and PIV Measurements of Cavitating Flows Around a Semi-Circular Leading-Edge Flat Plate and NACA0015 Hydrofoil
,”
Int. J. Multiphase Flow
,
60
, pp.
119
134
.
16.
Ishikawa
,
M.
,
Irabu
,
K.
,
Teruya
,
I.
, and
Nitta
,
M.
,
2009
, “
PIV Measurement of a Contraction Flow Using Micro-Bubble Tracer
,”
J. Phys.: Conf. Ser.
,
147
(
1
), p.
012010
.
17.
Van Wissen
,
R. J.
,
Schreel
,
K. R.
, and
Van Der Geld
,
C. W.
,
2005
, “
Particle Image Velocimetry Measurements of a Steam-Driven Confined Turbulent Water Jet
,”
J. Fluid Mech.
,
530
(
1
), pp.
353
368
.
18.
Eckstein
,
A.
, and
Vlachos
,
P. P.
,
2009
, “
Assessment of Advanced Windowing Techniques for Digital Particle Image Velocimetry (DPIV)
,”
Meas. Sci. Technol.
,
20
(
7
), p.
075402
.
19.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.
20.
Orlicz
,
G.
,
Balasubramanian
,
S.
,
Vorobieff
,
P.
, and
Prestridge
,
K.
,
2015
, “
Mixing Transition in a Shocked Variable-Density Flow
,”
Phys. Fluids
,
27
(
11
), p.
114102
.
21.
Malot
,
H.
, and
Blaisot
,
J.-B.
,
2000
, “
Droplet Size Distribution and Sphericity Measurements of Low-Density Sprays Through Image Analysis
,”
Part. Part. Syst. Charact.
,
17
(
4
), pp.
146
158
.
22.
Liao
,
Y.
, and
Lucas
,
D.
,
2009
, “
A Literature Review of Theoretical Models for Drop and Bubble Breakup in Turbulent Dispersions
,”
Chem. Eng. Sci.
,
64
(
15
), pp.
3389
3406
.
23.
Druault
,
P.
,
Bouhoubeiny
,
E.
, and
Germain
,
G.
,
2012
, “
POD Investigation of the Unsteady Turbulent Boundary Layer Developing Over Porous Moving Flexible Fishing Net Structure
,”
Exp. Fluids
,
53
(
1
), pp.
277
292
.
24.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
25.
Baltzer
,
J. R.
, and
Adrian
,
R. J.
,
2011
, “
Structure, Scaling, and Synthesis of Proper Orthogonal Decomposition Modes of Inhomogeneous Turbulence
,”
Phys. Fluids
,
23
(
1
), p.
015107
.
26.
Bouhoubeiny
,
E.
,
Druault
,
P.
, and
Germain
,
G.
,
2014
, “
Phase-Averaged Mean Properties of Turbulent Flow Developing Around a Fluttering Sheet of Net
,”
Ocean Eng.
,
82
, pp.
160
168
.
27.
Hekmati
,
A.
,
Ricot
,
D.
, and
Druault
,
P.
,
2011
, “
About the Convergence of POD and EPOD Modes Computed From CFD Simulation
,”
Comput. Fluids
,
50
(
1
), pp.
60
71
.
28.
Epps
,
B. P.
, and
Techet
,
A. H.
,
2010
, “
An Error Threshold Criterion for Singular Value Decomposition Modes Extracted From PIV Data
,”
Exp. Fluids
,
48
(
2
), pp.
355
367
.
29.
Hussein
,
H. J.
,
Capp
,
S. P.
, and
George
,
W. K.
,
1994
, “
Velocity Measurements in a High-Reynolds-Number, Momentum-Conserving, Axisymmetric, Turbulent Jet
,”
J. Fluid Mech.
,
258
(
1
), pp.
31
75
.
30.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,”
SAE
Paper No. 870598.
31.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.
32.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Summer Program
, pp.
193
208
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf
33.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
,
1990
, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A: Fluid Dyn.
,
2
(
5
), pp.
765
777
.
34.
Zhou
,
J.
,
Adrian
,
R. J.
, and
Balachandar
,
S.
,
1996
, “
Autogeneration of Near-Wall Vortical Structures in Channel Flow
,”
Phys. Fluids
,
8
(
1
), pp.
288
290
.
35.
Al Ba'ba'a
,
H. B.
,
Elgammal
,
T.
, and
Amano
,
R. S.
,
2016
, “
Correlations of Bubble Diameter and Frequency for Air–Water System Based on Orifice Diameter and Flow Rate
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
114501
.
36.
Wilkinson
,
P. M.
,
Van Schayk
,
A.
,
Spronken
,
J. P.
, and
Van Dierendonck
,
L.
,
1993
, “
The Influence of Gas Density and Liquid Properties on Bubble Breakup
,”
Chem. Eng. Sci.
,
48
(
7
), pp.
1213
1226
.
37.
Hervieu
,
E.
, and
Veneau
,
T.
,
1996
, “
Experimental Determination of the Droplet Size and Velocity Distributions at the Exit of the Bottom Discharge Pipe of a Liquefied Propane Storage Tank During a Sudden Blowdown
,”
J. Loss Prev. Process Ind.
,
9
(
6
), pp.
413
425
.
38.
Brown
,
R.
, and
York
,
J. L.
,
1962
, “
Sprays Formed by Flashing Liquid Jets
,”
AIChE J.
,
8
(
2
), pp.
149
153
.
You do not currently have access to this content.