In the current semiconductor industrial scenario, wafers are rinsed in an overflow rinsing tank while being mounted on several lifters prior to most of its manufacturing processes. However, a major drawback of this overflow rinsing methodology is that some of the processing fluid stagnates due to the generated vortices in the regions between the side and middle lifters which entrap some of the flushed particles that further adhere and deteriorate the surface of the wafers. In this work, the hydrodynamics of the flow field inside the wafer rinsing tank with this original lifter orientation setup was studied and compared through numerical simulation and flow visualization using particle image velocimetry (PIV) method, and a strong agreement was found between them in terms of velocity calculation. A new lifter orientation setup was initiated and it was evidenced by the numerical simulation that with this new setup, the generated vortices which are situated opposite to the lifters tilting direction can be displaced significantly in terms of magnitude and distribution. This work presents a new wafer cleaning concept which shows its great potentials in improvement and implementation to the current in-line wafer batch fabrication process without modifying the original design of the rinsing tank.

References

References
1.
Zhang
,
F.
,
Busnaina
,
A. A.
,
Fury
,
M. A.
, and
Wang
,
S.-Q.
,
2000
, “
The Removal of Deformed Submicron Particles From Silicon Wafers by Spin Rinse and Megasonics
,”
J. Electron. Mater.
,
29
(
2
), pp.
199
204
.
2.
Burdick
,
G.
,
Berman
,
N.
, and
Beaudoin
,
S.
,
2001
, “
Describing Hydrodynamic Particle Removal From Surfaces Using the Particle Reynolds Number
,”
J. Nanopart. Res.
,
3
(
5–6
), pp.
453
465
.
3.
Okorn-Schmidt
,
H. F.
,
Holsteyns
,
F.
,
Lippert
,
A.
,
Mui
,
D.
,
Kawaguchi
,
M.
,
Lechner
,
C.
,
Frommhold
,
P. E.
,
Nowak
,
T.
,
Reuter
,
F.
, and
Piqué
,
M. B.
,
2014
, “
Particle Cleaning Technologies to Meet Advanced Semiconductor Device Process Requirements
,”
ECS J. Solid State Sci. Technol.
,
3
(
1
), pp.
N3069
N3080
.
4.
Karimi
,
P.
,
Kim
,
T.
,
Aceros
,
J.
,
Park
,
J.
, and
Busnaina
,
A. A.
,
2010
, “
The Removal of Nanoparticles From Sub-Micron Trenches Using Megasonics
,”
Microelectron. Eng.
,
87
(
9
), pp.
1665
1668
.
5.
Chiang
,
C.-C.
,
Wu
,
B.
, and
Raghavan
,
S.
,
2015
, “
Particle Deposition and Removal of Relevance to Wet Processing in Semiconductor Manufacturing
,”
Part. Sci. Technol.
,
33
(
5
), pp.
546
553
.
6.
Zhai
,
K.
,
He
,
Q.
,
Li
,
L.
, and
Ren
,
Y.
,
2017
, “
Study on Chemical Mechanical Polishing of Silicon Wafer With Megasonic Vibration Assisted
,”
Ultrasonics
,
80
, pp.
9
14
.
7.
Sohn
,
H.-S.
,
Hong
,
U. S.
,
Park
,
C.-G.
,
Lee
,
E.-K.
,
Lee
,
H.-J.
,
Brause
,
E.
, and
Park
,
J.-G.
,
2007
, “
Removal of Backside Particles by a Single Wafer Megasonic System
,”
ECS Transactions
,
11
(
2
), pp.
95
100
.
8.
Vereecke
,
G.
,
Röhr
,
E.
, and
Heyns
,
M.
,
1999
, “
Laser-Assisted Removal of Particles on Silicon Wafers
,”
J. Appl. Phys.
,
85
(
7
), pp.
3837
3843
.
9.
Tsai
,
C.-H.
, and
Peng
,
W.-S.
,
2017
, “
Laser Cleaning Technique Using Laser-Induced Acoustic Streaming for Silicon Wafers
,”
J. Laser Micro/Nanoeng.
,
12
(
1
), pp.
1
5
.http://www.jlps.gr.jp/jlmn/upload/23d71ee7d3f3a4011cbab9223becf6d3.pdf
10.
Estragnat
,
E.
,
Ng
,
D.
,
Kulkarni
,
M.
,
McMullen
,
D.
,
Bahten
,
K.
, and
Liang
,
H.
,
2005
, “
Friction Forces in Post-CMP Cleaning Applications
,”
A2C2 Magazine
,
8
(
1
), pp.
14
78
.https://www.cemag.us/article/2005/01/friction-forces-post-cmp-cleaning-applications
11.
Kim
,
H. J.
,
Bohra
,
G.
,
Yang
,
H.
,
Ahn
,
S.-G.
,
Qin
,
L.
, and
Koli
,
D.
,
2015
, “
Study of the Cross Contamination Effect on Post CMP In Situ Cleaning Process
,”
Microelectron. Eng.
,
136
, pp.
36
41
.
12.
Burdick
,
G.
,
Berman
,
N.
, and
Beaudoin
,
S.
,
2005
, “
Hydrodynamic Particle Removal From Surfaces
,”
Thin Solid Films
,
488
(
1–2
), pp.
116
123
.
13.
Reinhardt
,
K.
, and
Kern
,
W.
,
2008
,
Handbook of Silicon Wafer Cleaning Technology
,
William Andrew
,
Norwich, NY
.
14.
Raccurt
,
O.
,
Tardif
,
F.
,
Kerber
,
L.
,
Lardin
,
T.
, and
Vareine
,
T.
,
2003
, “
A Novel Tank for DI Water Reduction in MEMS Manufacturing
,”
J. Micromech. Microeng.
,
13
(
3
), pp.
442
446
.
15.
Hall
,
R.
,
Rosato
,
J.
,
Lindquist
,
P.
,
Jarvis
,
T.
,
Parry
,
T.
, and
Walters
,
R.
,
1996
, “
Improving Rinse Efficiency With Automated Cleaning Tools
,”
Semicond. Int.
,
19
(
12
), pp.
151
160
.
16.
Bay
,
S. T.
,
McConnell
,
C. F.
,
Thomas
,
H. K.
,
Izenson
,
M. G.
, and
Murthi
,
J.
,
1995
, “
Computational Fluid Dynamic Modeling and Flow Visualization of an Enclosed Wet Processing System
,”
MRS Online Proc. Libr. Arch.
,
386
, p.
35
.
17.
Gomez
,
C.
,
Bennington
,
C.
, and
Taghipour
,
F.
,
2010
, “
Investigation of the Flow Field in a Rectangular Vessel Equipped With a Side-Entering Agitator
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
051106
.
18.
Ge
,
C.-Y.
,
Wang
,
J.-J.
,
Gu
,
X.-P.
, and
Feng
,
L.-F.
,
2014
, “
CFD Simulation and PIV Measurement of the Flow Field Generated by Modified Pitched Blade Turbine Impellers
,”
Chem. Eng. Res. Des.
,
92
(
6
), pp.
1027
1036
.
19.
Chen
,
G.
,
Xiong
,
Q.
,
Morris
,
P. J.
,
Paterson
,
E. G.
,
Sergeev
,
A.
, and
Wang
,
Y.
,
2014
, “
OpenFOAM for Computational Fluid Dynamics
,”
Not. AMS
,
61
(
4
), pp.
354
363
.
20.
Xiong
,
Q.
,
Aramideh
,
S.
,
Passalacqua
,
A.
, and
Kong
,
S.-C.
,
2015
, “
Characterizing Effects of the Shape of Screw Conveyors in Gas–Solid Fluidized Beds Using Advanced Numerical Models
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061008
.
21.
Xiong
,
Q.
,
Aramideh
,
S.
,
Passalacqua
,
A.
, and
Kong
,
S.-C.
,
2014
, “
BIOTC: An Open-Source CFD Code for Simulating Biomass Fast Pyrolysis
,”
Comput. Phys. Commun.
,
185
(
6
), pp.
1739
1746
.
22.
Park
,
J.
,
Derrandji-Aouat
,
A.
,
Wu
,
B.
,
Nishio
,
S.
, and
Jacquin
,
E.
, 2008, “
Uncertainty Analysis: Particle Imaging Velocimetry
,”
ITTC Recommended Procedures and Guidelines, International Towing Tank Conference
(
ITTC
), Fukuoka, Japan, Sept. 14–20, pp. 1–12.https://ittc.info/media/1211/75-01-03-03.pdf
23.
Xu
,
W.
,
Li
,
Q.
,
Wang
,
J.
, and
Jin
,
Y.
,
2016
, “
Performance Evaluation of a New Cyclone Separator—Part II Simulation Results
,”
Sep. Purif. Technol.
,
160
, pp.
112
116
.
24.
Narasimha
,
M.
,
Brennan
,
M.
,
Holtham
,
P.
, and
Napier-Munn
,
T.
,
2007
, “
A Comprehensive CFD Model of Dense Medium Cyclone Performance
,”
Miner. Eng.
,
20
(
4
), pp.
414
426
.
25.
Duan
,
L.
,
Wu
,
X.
,
Ji
,
Z.
,
Xiong
,
Z.
, and
Zhuang
,
J.
,
2016
, “
The Flow Pattern and Entropy Generation in an Axial Inlet Cyclone With Reflux Cone and Gaps in the Vortex Finder
,”
Powder Technol.
,
303
, pp.
192
202
.
26.
Speziale
,
C. G.
, and
Thangam
,
S.
,
1992
, “
Analysis of an RNG Based Turbulence Model for Separated Flows
,”
Int. J. Eng. Sci.
,
30
(
10
), pp.
1379
1388
.
27.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
28.
Chen
,
C.-Y.
,
Antón
,
R.
,
Hung
,
M.-Y.
,
Menon
,
P.
,
Finol
,
E. A.
, and
Pekkan
,
K.
,
2014
, “
Effects of Intraluminal Thrombus on Patient-Specific Abdominal Aortic Aneurysm Hemodynamics Via Stereoscopic Particle Image Velocity and Computational Fluid Dynamics Modeling
,”
ASME J. Biomech. Eng.
,
136
(
3
), p.
031001
.
You do not currently have access to this content.