A computational study was carried out to investigate the effects of internal geometry changes on the likelihood of solids buildup within, and the efficiency of, an industrial dust collector. Combustible solids held up in the unit pose a safety risk. The dust collector serves multiple functions, so the design requires a delicate balance. Particles should be separated from the incoming mixture and collected in the bottom of the unit. This particulate material should freely flow into a high-speed ejector (Mach 0.4) underneath. Gas must also flow freely to the top outlet, but sufficient gas must flow down to the ejector so that its motive gas augments the transport of particles back to the reactor (recirculation). Computational design evaluations included: (1) rod spacing, (2) ledge removal, and (3) rod cover plates. Testing on particle size distribution and density was carried out in-house to provide inputs to the computational fluid dynamics (CFD) model. Rod spacing reduction had a mixed effect on flow distribution. Plates were found to induce a negative effect on recirculation and a mixed effect on combustible solids accumulation. Removal of the ledge, however, offered slightly more recirculation along with completely alleviating stagnant solids accumulation. It is shown that, without consideration of detailed fluid physics, general separator design principals might be misguiding.

References

References
1.
Heumann
,
W. L.
,
1997
,
Industrial Air Pollution Control Systems
,
McGraw-Hill
,
New York
.
2.
Singer
,
J. G.
,
1991
,
Combustion Fossil Power
,
Combustion Engineering
,
Windsor, CT
, pp.
1
12
.
3.
Corsini
,
A.
,
Rispoli
,
F.
,
Sheard
,
A. G.
, and
Venturini
,
P.
,
2013
, “
Numerical Simulation of Coal Fly-Ash Erosion in an Induced Draft Fan
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
081303
.
4.
Oropeza-Vazquez
,
C.
,
Afanador
,
E.
,
Gomez
,
L.
,
Wang
,
S.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Kouba
,
G.
,
2004
, “
Oil-Water Separation in a Novel Liquid-Liquid Cylindrical Cyclone (LLCC©) Compact Separator—Experiments and Modeling
,”
ASME J. Fluids Eng.
,
126
(
4
), pp.
553
564
.
5.
Strasser
,
W.
,
2008
, “
Discrete Particle Study of Turbulence Coupling in a Confined Jet Gas-Liquid Separator
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011101
.
6.
Strasser
,
W.
,
2009
, “
Cyclone-Ejector Coupling and Optimisation
,”
Prog. Comput. Fluid Dyn.
,
10
(
1
), pp.
19
31
.
7.
Reyes-Gutiérrez
,
M. A.
,
Rojas-Solórzano
,
L. R.
,
Marín-Moreno
,
J. C.
,
Meléndez-Ramírez
,
A. J.
, and
Colmenares
,
J.
,
2006
, “
Eulerian-Eulerian Modeling of Disperse Two-Phase Flow in a Gas-Liquid Cylindrical Cyclone
,”
ASME J. Fluids Eng.
,
128
(
4
), pp.
832
837
.
8.
Wong
,
W.
,
Wang
,
X.
, and
Zhou
,
Y.
,
2007
, “
Turbulent Flow Structure in a Cylinder-on-Cone Cyclone
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1179
1185
.
9.
Wang
,
X.
,
Zhou
,
Y.
, and
Wong
,
W.
,
2011
, “
Turbulent Flow Structure and Swirl Number Effect in a Cyclone
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111103
.
10.
Akiyama
,
O.
, and
Kato
,
C.
,
2017
, “
Numerical Investigations of Unsteady Flows and Particle Behavior in a Cyclone Separator
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091302
.
11.
Yin
,
J.
,
Li
,
J.
,
Ma
,
Y.
,
Li
,
H.
,
Liu
,
W.
, and
Wang
,
D.
,
2015
, “
Study on the Air Core Formation of a Gas–Liquid Separator
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091301
.
12.
Bunyawanichakul
,
P.
,
Kirkpatrick
,
M. P.
,
Sargison
,
J. E.
, and
Walker
,
G. J.
,
2006
, “
Numerical and Experimental Studies of the Flow Field in a Cyclone Dryer
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1240
1250
.
13.
Zhang
,
J.-P.
,
Dai
,
Y.-X.
,
Wu
,
J.-L.
,
Ren
,
J.-X.
,
Wu
,
H.
, and
Ding
,
Q.-F.
,
2013
, “
Influence of Applied Magnetic Field on a Wire-Plate Electrostatic Precipitators Under Multi-Field Coupling
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
081105
.
14.
Poursaeidi
,
E.
, and
Arablu
,
M.
,
2011
, “
Using CFD to Study Combustion and Steam Flow Distribution Effects on Reheater Tubes Operation
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051303
.
15.
Estejab
,
B.
, and
Battaglia
,
F.
,
2015
, “
Assessment of Drag Models for Geldart a Particles in Bubbling Fluidized Beds
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031105
.
16.
Kubota
,
Y.
,
Hall
,
J. W.
, and
Higuchi
,
H.
,
2009
, “
An Experimental Investigation of the Flowfield and Dust Resuspension Due to Idealized Human Walking
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
081104
.
17.
He
,
P.
,
Wang
,
D.
,
Patel
,
R.
, and
Zhu
,
C.
,
2015
, “
Modeling of Axial-Symmetric Flow Structure in Gas–Solids Risers
,”
ASME J. Fluids Eng.
,
138
(
4
), p.
041302
.
18.
Kinzel
,
M. P.
,
Peltier
,
L. J.
,
Rosendall
,
B.
,
Elbert
,
M.
,
Rizhakov
,
A.
,
Berkoe
,
J.
, and
Knight
,
K.
,
2015
, “
A Model Constraint for Polydisperse Solids in Multifluid Flows
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111104
.
19.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
2005
,
Bubbles, Drops, and Particles
,
Courier
,
North Chelmsford, MA
.
20.
Bhushan
,
S.
,
Borse
,
M.
,
Walters
,
D. K.
, and
Pasiliao
,
C. L.
,
2016
, “Analysis of Turbulence Generation and Energy Transfer Mechanisms in Boundary Layer Transition Using Direct Numerical Simulation,”
ASME
Paper No. FEDSM2016-7795.
21.
Michaelides
,
E. E.
,
2016
, “
Wall Effects on the Brownian Movement, Thermophoresis, and Deposition of Nanoparticles in Liquids
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051303
.
22.
Fan
,
F.-G.
, and
Ahmadi
,
G.
,
1995
, “
Dispersion of Ellipsoidal Particles in an Isotropic Pseudo-Turbulent Flow Field
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
154
161
.
23.
Sommerfeld
,
M.
,
2001
, “
Validation of a Stochastic Lagrangian Modelling Approach for Inter-Particle Collisions in Homogeneous Isotropic Turbulence
,”
Int. J. Multiphase Flow
,
27
(
10
), pp.
1829
1858
.
24.
Chibbaro
,
S.
, and
Minier
,
J.-P.
,
2011
, “
A Note on the Consistency of Hybrid Eulerian/Lagrangian Approach to Multiphase Flows
,”
Int. J. Multiphase Flow
,
37
(
3
), pp.
293
297
.
25.
ANSYS,
2016
, “Solver Documentation,” ANSYS, Inc., Canonsburg, PA.
26.
Strasser
,
W.
,
2011
, “
Towards the Optimization of a Pulsatile Three-Stream Coaxial Airblast Injector
,”
Int. J. Multiphase Flow
,
37
(
7
), pp.
831
844
.
27.
Strasser
,
W.
, and
Battaglia
,
F.
,
2016
, “
Identification of Pulsation Mechanism in a Transonic Three-Stream Airblast Injector
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111303
.
28.
Strasser
,
W.
, and
Battaglia
,
F.
,
2016
, “
The Influence of Retraction on Three-Stream Injector Pulsatile Atomization for Air-Water Systems
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111302
.
29.
Strasser
,
W.
, and
Battaglia
,
F.
,
2017
, “
The Effects of Pulsation and Retraction on Non-Newtonian Flows in Three-Stream Injector Atomization Systems
,”
Chem. Eng. J.
,
309
(
1
), pp.
532
544
.
30.
Strasser
,
W.
, and
Battaglia
,
F.
,
2017
, “
The Effects of Prefilming Length and Feed Rate on Compressible Flow in a Self-Pulsating Injector
,”
Atomization Sprays
,
27
(
11
), pp.
929
947
.
31.
Strasser
,
W. S.
,
Feldman
,
G. M.
,
Wilkins
,
F. C.
, and
Leylek
,
J. H.
,
2004
, “Transonic Passage Turbine Blade Tip Clearance With Scalloped Shroud—Part II: Losses With and Without Scrubbing Effects in Engine Configuration,”
ASME
Paper No. IMECE2004-59116.
32.
Strasser
,
W.
,
2007
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
476
484
.
33.
Morsi
,
S.
, and
Alexander
,
A.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
You do not currently have access to this content.