The maxima of Reynolds shear stress and turbulent burst mean period time are crucial points in the intermediate region (termed as mesolayer) for large Reynolds numbers. The three layers (inner, meso, and outer) in a turbulent boundary layer have been analyzed from open equations of turbulent motion, independent of any closure model like eddy viscosity or mixing length, etc. Little above (or below not considered here) the critical point, the matching of mesolayer predicts the log law velocity, peak of Reynolds shear stress domain, and turbulent burst time period. The instantaneous velocity vector after subtraction of mean velocity vector yields the velocity fluctuation vector, also governed by log law. The static pressure fluctuation p also predicts log laws in the inner, outer, and mesolayer. The relationship between u/Ue with u/Ue from structure of turbulent boundary layer is presented in inner, meso, and outer layers. The turbulent bursting time period has been shown to scale with the mesolayer time scale; and Taylor micro time scale; both have been shown to be equivalent in the mesolayer. The shape factor in a turbulent boundary layer shows linear behavior with nondimensional mesolayer length scale. It is shown that the Prandtl transposition (PT) theorem connects the velocity of normal coordinate y with s offset to y + a, then the turbulent velocity profile vector and pressure fluctuation log laws are altered; but skin friction log law, based on outer velocity Ue, remains independent of a the offset of origin. But if skin friction log law is based on bulk average velocity Ub, then skin friction log law depends on a, the offset of origin. These predictions are supported by experimental and direct numerical simulation (DNS) data.

References

References
1.
Prandtl
,
L.
,
1932
, “
Zur Turbulenten Stromung in Rohren Und Lings Platten
,”
Ergeb. Aerodyn. Versuchsanst. Gbttingen
,
4
, pp.
18
29
.
2.
von Karman
,
T.
,
1930
, “
Mechanische Ahnlichkeit Und Turbulenz
,”
Third International Congress on Applied Mechanics
, Stockholm, Sweden, Aug. 24–29, pp.
85
105
.
3.
Izakson
,
A. A.
,
1937
, “
On Formula for the Velocity Distribution Near Walls (Engl. Trans.)
,”
Tech. Phys. USSR
,
4
, pp.
155
1590
.
4.
Millikan
,
C. B.
,
1939
, “
A Critical Discussion of Turbulent Flow in Channels and Circular Pipes
,”
Fifth International Conference of Applied Mechanics
, Cambridge, MA, Sept. 12–26, pp.
386
396
.
5.
Coles
,
D.
,
1956
, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
1
(
2
), pp.
191
226
.
6.
Fernholz
,
H. H.
, and
Finley
,
P. J.
,
1996
, “
The Incompressible Zero-Pressure-Gradient Turbulent Boundary Layer: An Assessment of the Data
,”
Prog. Aerosp. Sci.
,
32
(
4
), pp.
245
311
.
7.
Piquet
,
J.
,
2013
,
Turbulent Flows: Models and Physics
,
Springer
,
Berlin
.
8.
Afzal
,
N.
,
1982
, “
Fully Developed Turbulent Flow in a Pipe. An Intermediate Layer
,”
Arch. Appl. Mech.
,
52
(
6
), pp.
355
377
.
9.
Afzal
,
N.
,
1984
, “
Period Between Bursting in Turbulent Shear Flow: Intermediate Scaling
,”
Curr. Sci.
,
53
(
12
), pp.
640
642
.http://www.jstor.org/stable/24086376
10.
Long
,
R. R.
, and
Chen
,
T. C.
,
1981
, “
Experimental Evidence for the Existence of the ‘Mesolayer’ in Turbulent Systems
,”
J. Fluid Mech.
,
105
(
1
), pp.
19
59
.
11.
Afzal
,
N.
,
1984
, “
The Mesolayer Theory of Turbulent Flows
,”
AIAA J.
,
22
(3), pp.
437
439
.https://arc.aiaa.org/doi/abs/10.2514/3.8414
12.
Afzal
,
N.
,
1982
, “
A Sub-Boundary Layer Within a Two Dimensional Turbulent Boundary Layer: An Intermediate Layer
,”
J. Mec. Theor. Appl.
,
1
(
6
), pp.
963
973
.http://adsabs.harvard.edu/abs/1982JMecT...1..963A
13.
Afzal
,
N.
,
Seena
,
A.
, and
Bushra
,
A.
,
2018
, “
Turbulent Energy Production Peak and Its Location From Inner Most Log Law or Power Law Velocity in a Turbulent Channel/Pipe and Couette Flows
,”
Eur. J. Mech./B Fluids
,
67
, pp.
178
184
.
14.
Prandtl
,
L.
,
1938
, “
Zur Berechnung Der Grenzschichten
,”
ZAMM
,
18
, pp.
77
82
. (See also Rosenhead, L., 1966, “Laminar Boundary Layers,” Clarendon Press, Oxford, UK, pp. 211–212.)
15.
Glauert
,
M. B.
,
1957
, “
A Boundary Layer Theorem, With Applications to Rotating Cylinders
,”
J. Fluid Mech.
,
2
(
1
), pp.
89
99
.
16.
Yao
,
L. S.
,
1988
, “
A Note on Prandtl's Transposition Theorem
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
507
508
.
17.
Squire
,
H. B.
,
1948
, “
Reconsideration of Theory of Free Turbulence
,”
Phil. Mag.
,
39
(
288
), pp.
1
20
.
18.
Duncan
,
W. J.
,
Thom
,
A. S.
, and
Young
,
A. D.
,
1970
,
Mechanics of Fluids: (Paperback)
,
Edward Arnold
,
London
.
19.
Narasimha
,
R.
,
1977
, “A Dialogue (With D Coles) Concerning the Use of Matched Asymptotic Expansions,” Indian Institute of Science, Bangalore, India, Fluid Mechanics Report No. 77-FM-15.
20.
Spalart
,
R. P.
,
Coleman
,
G. N.
, and
Johnstone
,
R.
,
2008
, “
Direct Numerical Simulation of the Ekman Layer: A Step in Reynolds Number and Cautious Support of Log Law With a Shifted Origin
,”
Phys. Fluids
,
20
(
10
), p.
101507
.
21.
Afzal
,
N.
,
2009
, “
Neutrally Stratified Turbulent Ekman Boundary Layer: Universal Similarity on Transitional Rough Surface
,”
Boundary-Layer Meteorol.
,
132
(
2
), pp.
241
248
.
22.
Mizuno
,
Y.
, and
Jimenez
,
J.
,
2011
, “
Mean Velocity and Length-Scales in the Overlap Region of Wall-Bounded Turbulent Flows
,”
Phys. Fluids
,
23
(
8
), p.
085112
.
23.
Jackson
,
P. S.
,
1981
, “
On the Displacement Height in the Logarithmic Velocity Profile
,”
J. Fluid Mech.
,
111
(
1
), pp.
15
25
.
24.
Afzal
,
N.
,
1976
, “
Millikan's Argument at Moderately Large Reynolds Number
,”
Phys. Fluids
,
19
(
4
), pp.
600
602
.
25.
Afzal
,
N.
,
2009
, “
Analysis of Instantaneous Turbulent Velocity Vector and Temperature Profiles in Transitional Rough Channel Flow
,”
ASME J. Heat Transfer
,
131
(
6
), p.
064503
.
26.
Townsend
,
A. A.
,
1976
,
The Structure of Turbulent Shear Flow
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
27.
Clauser
,
F. H.
,
1956
, “
The Turbulent Boundary Layers
,”
Advances in Applied Mechanics
, Vol.
4
,
Academic Press
,
New York
, pp.
1
51
.
28.
Mellor
,
G. L.
, and
Gibson
,
D. M.
,
1966
, “
Equilibrium Turbulent Boundary Layers
,”
J. Fluid Mech.
,
24
(
2
), pp.
225
253
.
29.
Mikhailov
,
V. V.
,
2005
, “
Universal Velocity Defect Law for the Turbulent Boundary Layer
,”
Fluid Dyn.
,
40
(
2
), pp.
245
255
.
30.
Monkewitz
,
P. A.
,
Chauhan
,
K. A.
, and
Nagib
,
N. M.
,
2007
, “
Self-Consistent High-Reynolds-Number Asymptotics for Zero-Pressure-Gradient Turbulent Boundary Layers
,”
Phys. Fluids
,
19
(
11
), p.
115101
.
31.
Inoue
,
M.
, and
Pullin
,
D. I.
,
2011
, “
Large-Eddy Simulation of the Zero-Pressure-Gradient Turbulent Boundary Layer Up to Reθ = O(1012)
,”
J. Fluid Mech.
,
686
, pp.
507
533
.
32.
Pirozzoli
,
S.
,
2014
, “
Revisiting the Mixing-Length Hypothesis in the Outer Part of Turbulent Wall Layers: Mean Flow and Wall Friction
,”
JFM
,
745
, pp.
378
397
.
33.
Castro
,
I. P.
,
2007
, “
Rough-Wall Boundary Layers: Mean Flow Universality
,”
J. Fluid Mech.
,
585
, pp.
469
485
.
34.
Jimenez
,
J.
,
Hoyas
,
S.
,
Simens
,
M. P.
, and
Mizuno
,
Y.
,
2010
, “
Turbulent Boundary Layers and Channels at Moderate Reynolds Numbers
,”
J. Fluid. Mech.
,
657
, pp.
335
–360.
35.
Sillero
,
J. A.
,
Jimenez
,
J.
, and
Moser
,
R. D.
,
2013
, “
One-Point Statistics for Turbulent Wall-Bounded Flows at Reynolds Numbers Up to δ+ = 2000
,”
Phys. Fluids
,
25
(
10
), p.
105102
.
36.
Schlatter
,
P.
, and
Orlu
,
R.
,
2010
, “
Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
659
, pp.
116
126
.
37.
Wu
,
X.
,
2010
, “
Establishing the Generality of Three Phenomena Using a Boundary Layer With Free-Stream Passing Wakes
,”
J. Fluid Mech.
,
664
, pp.
193
219
.
38.
Wu
,
X.
, and
Moin
,
P.
,
2009
, “
Direct Numerical Simulation of Turbulence in a Nominally Aero-Pressure-Gradient Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
630
, pp.
5
41
.
39.
Lee
,
J. H.
, and
Sung
,
H. J.
,
2011
, “
Direct Numerical Simulation of a Turbulent Boundary Layer Up to Reθ = 2500
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
1
10
.
40.
Orlu
,
R.
,
2009
, “Experimental Studies in Jet Flows and Zero Pressure-Gradient Turbulent Boundary Layer,”
Ph.D. thesis
, KTH, Stockholm, Sweden.https://www.mech.kth.se/~ramis/pdfs/PhD_Ramis.pdf
41.
Spalart
,
P. R.
,
1989
, “
Direct Simulation of a Turbulent Boundary Layer Up to Rθ = 1410
,”
J. Fluid Mech.
,
187
, pp.
61
98
.
42.
Castro
,
I. P.
,
Segalini
,
A.
,
Henrik
,
P.
, and
Alfredsson
,
P. H.
,
2013
, “
Outer-Layer Turbulence Intensities in Smooth- and Rough-Wall Boundary Layers
,”
J. Fluid Mech.
,
727
, pp.
119
131
.
43.
Segalini
,
A.
,
Orlu
,
R.
,
Schlatter
,
P.
,
Henrik Alfredsson
,
P.
,
Ruedi
,
J.-D.
, and
Talamelli
,
A.
,
2011
, “
A Method to Estimate Turbulence Intensity and Transverse Taylor Microscale in Turbulent Flows From Spatially Averaged Hot-Wire Data
,”
Exp. Fluids
,
51
(
3
), pp.
693
700
.
44.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Runstadler
,
P. W.
,
1967
, “
The Structure of Turbulent Boundary Layers the Structure of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
30
, pp.
741
773
.
45.
Rao
,
K. N.
,
Narasimha
,
R.
, and
Narayanan
,
M. A. B.
,
1971
, “
The ‘Bursting’ Phenomenon in a Turbulent Boundary Layer the ‘Bursting’ Phenomenon in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
48
(
2
), pp.
339
352
.
46.
Osterlund
,
J. M.
,
Lindgren
,
B.
, and
Johansson
,
A. V.
,
2003
, “
Flow Structure in Zero Pressure Gradient Turbulent Boundary Layer at High Reynolds Numbers
,”
Euro. J. Mech. B/Fluids
,
22
, pp.
379
390
.
47.
Metzger
,
M.
,
McKeon
,
B. J.
, and
Arce-Larreta
,
E.
,
2010
, “
Scaling the Characteristic Time of the Bursting Process in the Turbulent Boundary Layer
,”
Physica D
,
239
(
14
), pp.
1296
1304
.
48.
Alfredsson
,
P. H.
, and
Johansson
,
A. V.
,
1984
, “
Time Scales in Turbulent Channel Flow
,”
Phys. Fluids
,
27
(
8
), pp.
1974
1981
.
49.
Demare
,
S.
,
Labraga
,
L.
, and
Tournier
,
C.
,
1999
, “
Comparison and Scaling of the Bursting Period in Rough and Smooth Walls Channel Flows
,”
ASME J. Fluids Eng.
,
121
(
4
), pp.
735
748
.
51.
Nagano
,
Y.
, and
Houra
,
T.
,
2004
, “
Scaling of Near Wall Structures in Turbulent Boundary Layers Subjected to Adverse Pressure Gradient
,”
IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow
, Princeton, NJ, Sept. 11–13, pp.
291
296
.
52.
Afzal
,
N.
,
1997
, “Power Laws in the Wall and Wake Layers of a Turbulent Boundary Layer,” Seventh Asian Congress of Fluid Mechanics, IIT Madras, India, Dec. 8–12, pp.
805
808
.
53.
Seena
,
A.
, and
Afzal
,
N.
,
2008
, “
Power Law Velocity and Temperature Profiles in a Turbulent Channel Flow
,”
ASME J. Heat Transfer
,
130
(
9
), p.
091701
.
54.
Panton
,
R. L.
,
Lee
,
M.
, and
Moser
,
R. D.
,
2017
, “
Correlation of Pressure Fluctuations in Turbulent Wall Layers
,”
Phys. Rev. Fluids
,
2
(
9
), p.
094604
.
55.
Afzal
,
N.
,
1983
, “
Analysis of a Turbulent Boundary Layer Subjected to a Strong Adverse Pressure Gradient
,”
Int. J. Eng. Sci.
,
21
(
6
), pp.
563
576
.
56.
Afzal
,
N.
,
2008
, “
Turbulent Boundary Layer With Negligible Wall Stress
,”
ASME J. Fluids Eng.
,
130
(
5
), p.
051205
.
57.
Osterlund
,
J. M.
,
1999
, “Experimental Studies of Zero Pressure-Gradient Turbulent Boundary Layer Flow,”
Ph.D. thesis
, Royal Institute of Technology, Stockholm, Sweden.https://www.mech.kth.se/~jens/zpg/art/zpg_screen.pdf
58.
Purtell
,
L. P.
,
Klebanoff
,
K. S.
, and
Buckley
,
F. T.
,
1981
, “
Turbulent Boundary Layer at Low Reynolds Number
,”
Phys. Fluids
,
24
(
5
), pp.
802
811
.
59.
Subramanian
,
C. S.
, and
Antonia
,
R. A.
,
1981
, “
Effect of Reynolds Number on a Slightly Heated Turbulent Boundary Layer
,”
IJHMT
,
24
(
11
), pp.
1833
1846
.
60.
Coles
,
D.
,
1962
, “The Turbulent Boundary Layer in a Compressible Fluid,” RAND Corporation, Santa Monica, CA, Report No. R-403-PR.
61.
Rotta
,
J. C.
,
1962
, “
The Calculation of the Turbulent Boundary Layer
,”
Prog. Aeronaut. Sci.
,
2
(
1
), pp.
1
219
.
62.
Lewkowicz
,
A. K.
,
1982
, “
An Improved Universal Wake Function for Turbulent Boundary Layers and Some of Its Consequences
,”
Z. Flugwiss. Weltraum.
,
6
, pp.
261
266
.
63.
Lee
,
J. H.
,
2015
, “
Turbulent Boundary Layer Flow With a Step Change From Smooth to Rough Surface
,”
Int. J. Heat Fluid Flow
,
54
, pp.
39
54
.
You do not currently have access to this content.