This paper is concerned with the study of a kind of discrete forcing immersed boundary method (IBM) by which the loosely aero-elasticity coupled method is developed to analyze turbine blade vibration. In order to reduce the spurious oscillations at steep gradients in the compressible viscous flowing field, a five orders weighted essentially nonoscillatory scheme (WENO) is introduced into the flow solver based on large eddy simulation (LES). The three-dimensional (3D) full-annulus domain of the last two stages of an industrial steam axial turbine is adopted to validate the developed method. By the method, the process of grid generation becomes very simple and the unsteady data transferring between stator and rotor is realized without the process of being averaged or weighted. Based on the analysis of some important aerodynamic parameters, it is believed that hypothesis of azimuthal periodicity is not reasonable in this case and full-annulus passages model is more feasible and suitable to the research of turbine blade vibration. Meanwhile, the blade vibration data are also discussed. It is at about 65% of rotor blade height of the last stage that an inflection point is observed and the midspan region of the blade is the vulnerable part damaged potentially by the blade vibration.

References

References
1.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific & Technical
, New York.
2.
Campbell
,
W.
,
1924
,
Protection of Steam Turbine Disk Wheels From Axial Vibration
,
American Society of Mechanical Engineers
,
New York
.
3.
Norwinski
,
M.
, and
Panovsky
,
J.
,
1998
, “
Flutter Mechanisms in Low Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
82
88
.
4.
Im
,
H.
, and
Zha
,
G.
,
2012
, “Simulation of Non-Synchronous Blade Vibration of an Axial Compressor Using a Fully Coupled Fluid/Structure Interaction,”
ASME
Paper No. GT2012-68150.
5.
Yamaguchi
,
K.
, and
Takahashi
,
Y.
,
2014
, “
Method for Predicting Unsteady Vibration of Gas Turbine Compressor Blades Under Subsonic Near-Stall Conditions
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122501
.
6.
Giersch
,
T.
,
Figaschewsky
,
F.
,
Hönisch
,
P.
,
Kühhorn
,
A.
, and
Schrape
,
S.
,
2014
, “Numerical Analysis and Validation of the Rotor Blade Vibration Response Induced by High Pressure Compressor Deep Surge,”
ASME
Paper No. GT2014-26295.
7.
Gan
,
J.
,
Im
,
H.
,
Espinal
,
D.
,
Lefebvre
,
A.
, and
Zha
,
G.
,
2014
, “Investigation of a Compressor Rotor Non-Synchronous Vibration With and Without Fluid-Structure Interaction,”
ASME
Paper No. GT2014-26478.
8.
Su
,
D.
,
Zhang
,
W.
,
Ma
,
M.
, and
Zh
,
Y.
,
2013
, “An Efficient Coupled Method of Cascade Flutter Investigation Based on Reduced Order Model,”
AIAA
Paper No. AIAA-2013-3618.
9.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around the Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.
10.
Ghias
,
R.
,
Mittal
,
R.
, and
Dong
,
H.
,
2007
, “
A Sharp Interface Immersed Boundary Method for Compressible Viscous Flows
,”
J. Comput. Phys.
,
225
(
1
), pp.
528
553
.
11.
Brehm
,
C.
,
Hader
,
C.
, and
Fasel
,
H. F.
,
2012
, “Novel Immersed Boundary/Interface Method for the Compressible Navier–Stokes Equations,”
AIAA
Paper No. AIAA-2012-1110.
12.
Dhamankar
,
N. S.
,
Blaisdell
,
G. A.
, and
Lyruntzis
,
A. S.
,
2013
, “Implementation of a Sharp Immersed Boundary Method in a 3-D Multi-Block Large Eddy Simulation Tool for Jet Aeroacoustics,”
AIAA
Paper No. AIAA-2015-0504.
13.
Liu
,
J.
,
Zhao
,
N.
,
Hu
,
O.
,
Goman
,
M.
, and
Li
,
X. K.
,
2013
, “
A New Immersed Boundary Method for Compressible Navier–Stokes Equations
,”
Int. J. Comput. Fluid Dyn.
,
27
(
3
), pp.
151
163
.
14.
Zhang
,
Y.
, and
Zhou
,
C. H.
,
2014
, “
An Immersed Boundary Method for Simulation of Inviscid Compressible Flows
,”
Int. J. Numer. Methods Fluids
,
74
(
11
), pp.
775
793
.
15.
Arias-Ramirez
,
W.
,
Olson
,
B. J.
, and
Wolf
,
W. R.
,
2016
, “Compressible Flow Simulations of Wave Scattering Problems Using the Immersed Boundary Method,”
AIAA
Paper No. AIAA-2016-2781.
16.
Mizuno
,
Y.
,
Takahashi
,
S.
,
Nonomura
,
T.
,
Nagata
,
T.
, and
Fukuda
,
K.
,
2016
, “Direct Numerical Simulation of Shock Waves Passed by Multiple Particles Using Immersed Boundary Method,”
AIAA
Paper No. AIAA-2016-0618.
17.
Qiu
,
Y. L.
,
Shu
,
C.
,
Wu
,
J.
,
Sun
,
Y.
,
Yang
,
L. M.
, and
Guo
,
T. Q.
,
2016
, “
A Boundary Condition-Enforced Immersed Boundary Method for Compressible Viscous Flows
,”
Comput. Fluids
,
136
(10), pp.
104
113
.
18.
Bernardini
,
M.
,
Modesti
,
D.
, and
Pirozzoli
,
S.
,
2016
, “
On the Suitability of the Immersed Boundary Method for the Simulation of High-Reynolds-Number Separated Turbulent Flow
,”
Comput. Fluids
,
130
(
5
), pp.
84
93
.
19.
Luo
,
K.
,
Zhuang
,
Z.
,
Fan
,
J.
, and
Haugen
,
N. E. L.
,
2016
, “
A Ghost-Cell Immersed Boundary Method for Simulations of Heat Transfer in Compressible Flows Under Different Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
92
(
1
), pp.
708
717
.
20.
Gobal
,
K.
, and
Grandhi
,
R. V.
,
2015
, “Nonlinear Aeroelastic Analysis of High Aspect-Ratio Wings Using Immersed Boundary Techniques,”
AIAA
Paper No. AIAA-2015-0766.
21.
Harten
,
A.
,
Bjorn
,
E.
,
Stanley
,
O.
, and
Sukumar
,
R. C.
,
1987
, “
Uniformly High Order Accurate Essentially Non-Oscillatory Schemes
,”
J. Comput. Phys.
,
71
(
2
), pp.
231
303
.
22.
Jiang
,
G.-S.
, and
Shu
,
C.-W.
,
1995
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
23.
Liu
,
X. D.
,
Osher
,
S.
, and
Chan
,
T.
,
1994
, “
Weighted Essentially Non-Oscillatory
,”
J. Comput. Phys.
,
115
(
1
), pp.
200
221
.
24.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2010
, “
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
,”
AIAA J.
,
48
(
8
), pp.
1772
1784
.
25.
Yang
,
B.
,
2016
, “Experiment and Numerical Simulation Research on the Aerodynamic Performance of a Turbine Under the Small Volume Conditions,” Project Report No. 15DA003-15S21.
You do not currently have access to this content.