The hydrodynamic entrance length, pressure drop analysis, viscosity, and fully developed velocity profile in horizontal pipe for crude oil with and without water and surfactant were studied in a 2 in ID horizontal pipe of length 2.5 m experimentally. Hydrodynamic entry length and fluid characteristics have been examined by varying temperature, water fraction, and flow rates. Temperature was varied by 25–40 °C, flow rates 40–60 LPM, and water 0–15% v/v and Madhuca longifolia from 500 to 2000 ppm. Triton X-100 was mixed with water to increase the emulsion capability during crude oil–water flows. The results showed significant influence of water, flow rate, and temperature on the hydrodynamic entry region length, pressure drop, viscosity, and velocity profiles along with natural surfactant. Pressure drop was reduced by 93.75%, 94.18%, and 93.02% with 15% water and 2000 ppm surfactant at 40 °C for 40 LPM, 50 LPM, and 60 LPM, respectively. Viscosity of the crude oil during flowing is greatly influenced by water and addition of surfactant. After addition of 2000 ppm surfactant and 15% water at 40 °C, viscosity reduced by about 94%. Hydrodynamic entry region length increased from 0.0354 to 0.2014 m, 0.0368 to 0.2336 m, and 0.0384 to 0.2641 m during transportation of crude oil after addition of 2000 ppm surfactant and 15% water at 40 °C for 40 LPM, 50 LPM, and 60 LPM flow, respectively.

References

References
1.
Jing
,
J. Q.
,
Sun
,
J.
,
Tan
,
J.
,
Huang
,
M.
,
Liang
,
Q.
, and
Xue
,
T.
,
2016
, “
Investigation on Flow Patterns and Pressure Drops of Highly Viscous Crude Oil–Water Flows in a Horizontal Pipe
,”
Exp. Therm. Fluid Sci.
,
72
, pp.
88
96
.
2.
Jin
,
F.
,
Wang
,
S.
,
Pu
,
W.
,
Yuan
,
C.
,
Wang
,
L.
,
Li
,
K.
, and
Gong
,
C.
,
2016
, “
Emulsified Oil Foam for Improving the Flowability of Heavy Crude Oil in Wellbore Under High Salinity Environments
,”
J. Ind. Eng. Chem.
,
39
, pp.
153
161
.
3.
Kumar
,
R.
,
Gudala
,
M.
,
Ram Mohan Rao
,
T.
,
Mandal
,
A.
, and
Naiya
,
T. K.
,
2016
, “
Studies on Flow of Emulsified Crude Oil Through Horizontal Pipelines
,”
J. Mod. Chem. Chem. Technol.
,
7
(
1
), pp.
82
88
.http://www.stmjournals.com/index.php?journal=JoMCCT&page=article&op=view&path%5B%5D=7197
4.
Vuong
,
D. H.
,
Zhang
,
H. Q.
, and
Li
,
M.
,
2009
, “
Experimental Study on High Viscosity Oil/Water Flow in Horizontal and Vertical Pipes
,”
SPE Annual Technical Conference
, New Orleans, LA, Oct. 4–7,
SPE
Paper No. SPE-124542-MS
5.
Vielma
,
M.
,
Atmaca
,
S.
,
Sarica
,
C.
, and
Zhang
,
H. Q.
,
2007
, “
Characterization of Oil/Water Flows in Horizontal Pipes
,” SPE Annual Technical Conference, Anaheim, CA, Nov. 11–14,
SPE
Paper No. SPE-109591-MS.
6.
Jana
,
A. K.
,
Ghoshal
,
P.
,
Das
,
G.
, and
Das
,
P. K.
,
2007
, “
An Analysis of Pressure Drop and Holdup for Liquid-Liquid Upflow Through Vertical Pipes
,”
J. Chem. Eng. Technol.
,
30
(
7
), pp.
920
925
.
7.
Chakrabarti
,
D. P.
,
Ghoshal
,
P.
, and
Das
,
G.
,
2006
, “
Behaviour of Pressure Gradient and Transient Pressure Signals During Liquid-Liquid Two Phase Flow
,”
J. Chem. Eng. Technol.
,
29
(
10
), pp.
1183
1195
.
8.
Trallero
,
J. L.
,
Sarica
,
C.
, and
Brill
,
J. P.
,
1997
, “
A Study of Oil/Water Flow Patterns in Horizontal Pipes
,”
SPE Prod. Facil.
,
12
(3), p. SPE-36609-PA.
9.
Atmaca
,
S.
,
Sarica
,
C.
,
Zhang
,
H. Q.
, and
Al-Sarkhi
,
A. S.
,
2008
, “
Characterization of Oil/Water Flows in Inclined Pipes
,” SPE Annual Technical Conference, Denver, CO, Sept. 21–24,
SPE
Paper No. SPE-115485-MS.
10.
Sridhar
,
S.
,
Zhang
,
H. Q.
,
Sarica
,
C.
, and
Pereyra
,
E.
,
2011
, “
Experiments and Model Assessment on High-Viscosity Oil/Water Inclined Pipe Flows
,” SPE Annual Technical Conference, Denver, CO, Oct. 30–Nov. 2,
SPE
Paper No. SPE-146448-MS.
11.
McKibben
,
M. J.
,
Gillies
,
R. G.
, and
Shook
,
C. A.
,
2000
, “
A Laboratory Investigation of Horizontal Well Heavy Oil-Water Flows
,”
Can. J. Chem. Eng.
,
78
(
4
), pp.
743
751
.
12.
Baharami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
R. J.
,
2006
, “
Pressure Drop of Fully Developed, Laminar Flow in Rough Microtubes
,”
ASME J. Fluids Eng.
,
128
(3), pp.
632
637
.
13.
Brewster
,
A. R.
,
2013
, “
Pressure Drop Predictions for Laminar Fully Developed Flows of Purely-Viscous Non-Newtonian Fluids in Circular Ducts
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101106
.
14.
Poole
,
R. J.
, and
Ridley
,
B. S.
,
2007
, “
Development Length Requirements for Fully-Developed Laminar Pipe Flow of Inelastic Non-Newtonian Liquids
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1281
1287
.
15.
Poole
,
R. J.
, and
Chhabra
,
P. R.
,
2010
, “
Development Length Requirements for Fully Developed Laminar Pipe Flow of Yield Stress Fluids
,”
ASME J. Fluids Eng.
,
132
(
3
), p.
034501
.
16.
Ashrafizadeh
,
S. N.
, and
Kamran
,
M.
,
2010
, “
Emulsification of Heavy Crude Oil in Water for Pipeline Transportation
,”
J. Pet. Sci. Eng.
,
71
(
3–4
), pp.
205
211
.
17.
Ismail
,
A. S. I.
,
Ismail
,
I.
,
Zoveidavianpoor
,
M.
,
Mohsin
,
R.
,
Piroozian
,
A.
,
Misnan
,
M. S.
, and
Sariman
,
M. Z.
,
2015
, “
Experimental Investigation of Oil–Water Two-Phase Flow in Horizontal Pipes: Pressure Losses, Liquid Holdup and Flow Patterns
,”
J. Pet. Sci. Eng.
,
127
, pp.
409
420
.
18.
Al-Wahaibi
,
T.
,
Al-Wahaibi
,
Y.
,
Al-Ajmi
,
A.
,
Yusuf
,
N.
,
Al-Hashmi
,
A. R.
,
Olawale
,
A. S.
, and
Mohammed
,
I. A.
,
2013
, “
Experimental Investigation on the Performance of Drag Reducing Polymers Through Two Pipe Diameters in Horizontal Oil–Water Flows
,”
Exp. Thermal Fluid Sci.
,
50
, pp.
139
146
.
19.
Kelesoglu
,
S.
,
Pettersen
,
B. H.
, and
Sjoblom
,
J.
,
2012
, “
Flow Properties of Water-in-North Sea Heavy Crude Oil Emulsions
,”
J. Pet. Sci. Eng.
,
100
, pp.
14
23
.
20.
Zhang
,
J.
, and
Xu
,
J. Y.
,
2016
, “
Rheological Behaviour of Oil and Water Emulsions and Their Flow Characterization in Horizontal Pipes
,”
Can J. Chem. Eng.
,
94
(
2
), pp.
324
331
.
21.
Son
,
Y.
,
2007
, “
Determination of Shear Viscosity and Shear Rate From Pressure Drop and Flow Rate Relationship in a Rectangular Channel
,”
Polymer
,
48
(
2
), pp.
632
637
.
22.
Santos
,
R. G.
,
Brinceno
,
M. I.
, and
Loh
,
W.
,
2017
, “
Laminar Pipeline Flow of Heavy Oil–in–Water Emulsions Produced by Continuous In-Line Emulsification
,”
J. Pet. Sci. Eng.
,
156
, pp.
827
834
.
23.
Rabinowitsch
,
B.
,
1929
, “
Über die Viskosit€at und Elastizit€at von Solen (On the Viscosity and Elasticity of Sols)
,”
Z. Phys. Chem. A.
,
145
(
1
), pp.
1
26
.
24.
Hasan
,
S. W.
,
Ghannam
,
M. T.
, and
Esmail
,
N.
,
2010
, “
Heavy Crude Oil Viscosity Reduction and Rheology for Pipeline Transportation
,”
Fuel
,
89
(
5
), pp.
1095
1100
.
25.
Banerjee
,
S.
,
Kumar
,
R.
,
Ansari
,
I.
,
Mandal
,
A.
, and
Naiya
,
T. K.
,
2016
, “
Effect of Extracted Natural Surfactant on Flow Behaviour of Heavy Crude Oil
,”
Int. J. Oil, Gas Coal Technol.
,
13
(
3
), pp.
260
276
.
26.
Naiya
,
T. K.
,
Banerjee
,
S.
,
Kumar
,
R.
, and
Mandal
,
A.
,
2015
, “
Heavy Crude Oil Rheology Improvement Using Naturally Extracted Surfactant
,” SPE Oil and Gas India Conference and Exhibition, Mumbai, India, Nov. 24–26,
SPE
Paper No. SPE-178133-MS.
27.
Gudala
,
M.
,
Banerjee
,
S.
,
Kumar
,
A.
,
Rao, T
,
R. M.
,
Mandal
,
A.
, and
Naiya
,
T. K.
,
2017
, “
Rheological Modeling and Drag Reduction Studies of Indian Heavy Crude Oil in Presence of Novel Surfactant
,”
Pet. Sci. Technol.
,
35
(
24
), pp.
2287
2295
.
28.
Guo
,
J.
,
Yang
,
Y.
,
Zhang
,
D.
,
Wu
,
W.
,
Yang
,
Z.
, and
He
,
L.
,
2018
, “
A General Model for Predicting Apparent Viscosity of Crude Oil or Emulsion in Laminar Pipeline at High Pressures
,”
J. Pet. Sci. Eng.
,
160
, pp.
12
23
.
29.
Ghannam
,
M. T.
,
Abu-Jdayil
,
B.
, and
Esmail
,
N.
,
2014
, “
Experimental Investigation of Crude Oil-Xanthan Emulsions Flow Behaviour
,”
J. Pet. Sci. Res.
,
3
(
1
), pp.
1
15
.http://www.dpi-journals.com/index.php/JPSR/article/view/999
30.
Mooney
,
M.
,
1931
, “
Explicit Formulas for Slip and Fluidity
,”
J. Rheol.
,
2
(
2
), pp.
210
222
.
31.
Yoshimura
,
A.
, and
Prudhomme
,
R. K.
,
1988
, “
Wall Slip Corrections for Couette and Parallel Disk Viscometers
,”
J. Rheol.
,
32
(
1
), pp.
53
67
.
32.
Barnes
,
H. A.
,
1995
, “
A Review of the Slip (Wall Depletion) of Polymer Solutions, Emulsions and Particle Suspensions in Viscosimeters: Its Cause, Character, and Cure
,”
J. Non-Newtonian Fluid Mech.
,
56
(
3
), pp.
221
251
.
33.
Santos
,
R. G.
,
Bannwart
,
A.
, and
Loh
,
W.
,
2014
, “
Phase Segregation, Shear Thinning and Rheological Behavior of Crude Oil-in-Water Emulsions
,”
Chem. Eng. Res. Des.
,
92
(9), pp.
1629
1636
.
34.
Langevin
,
D.
,
Poteau
,
S.
,
Henaut
,
I.
, and
Argillier
,
J. F.
,
2004
, “
Crude Oil Emulsion Properties and Their Application to Heavy Oil Transportation
,”
Oil Gas Sci. Technol.
,
59
(
5
), pp.
511
521
.
35.
Durst
,
F.
,
Ray
,
S.
,
Unsal
,
B.
, and
Bayoumi
,
O. A.
,
2005
, “
The Development Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1154
1160
.
36.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Heat Transfer and Other Phenomenon
,”
AIChE J
,
18
(6), pp.
1121
1132
.
37.
Saffari
,
H.
,
Moosavi
,
R.
,
Nouri
,
N. M.
, and
Lin
,
C.
,
2014
, “
Prediction of Hydrodynamic Entrance Length for Single and Two-Phase Flow in Helical Coils
,”
Chem. Eng. Proc.
,
86
, pp.
9
21
.
You do not currently have access to this content.