A twin-fluid atomizer configuration is predicted by means of the two-dimensional (2D) weakly compressible smooth particle hydrodynamics (SPH) method and compared to experiments. The setup consists of an axial liquid jet surrounded by a high-speed air stream (Ug ≈ 60 m/s) in a pressurized reactor, which is operated at up to 11 bar. Two types of liquid are investigated: a viscous Newtonian liquid (μl = 200 mPa·s) consisting of glycerol/water mixture and a viscous non-Newtonian liquid (μ1,apparent. ≈ 150 mPa·s), which is a carboxymethyl cellulose solution. Three-dimensional (3D) effects are taken into account in the 2D code by introducing: (i) a surface tension term, (ii) a cylindrical viscosity operator, and (iii) a modified velocity accounting for the divergence of the volume in the radial direction. The numerical results at high pressure show a good qualitative agreement with experiment, i.e., a correct transition of the different atomization regimes with regard to pressure, and similar dynamics and length scales of the generated ligaments. The propagation velocity of the Kelvin–Helmholtz (KH) instability is well predicted, but its frequency needs a correction factor to be globally well recovered for the Newtonian liquid. The Sauter mean diameter (SMD), calculated from the spray size distribution, shows similar trends of the reactor pressure dependency. The simulation of the non-Newtonian liquid at high pressure shows the same breakup regime with finer droplets compared to Newtonian liquids, and the simulation at atmospheric pressure shows an apparent viscosity similar to the experiment.

References

References
1.
Dahmen
,
N.
,
Dinjus
,
E.
,
Kolb
,
T.
,
Arnold
,
U.
,
Leibold
,
H.
, and
Stahl
,
R.
,
2012
, “
State of the Art of the Bioliq Process for Synthetic Biofuels Production
,”
Environ. Prog. Sustain. Energy
,
31
(
2
), pp.
176
181
.
2.
Dahmen
,
N.
,
Dinjus
,
E.
, and
Henrich
,
E.
,
2007
, “
Synthesis Gas From Biomass-Problems and Solutions En Route to Technical Realization
,”
Oil Gas Eur. Mag.
,
33
(
1
), p.
31
.http://www.bioliq.de/downloads/Oil_Gas_eng__2007.pdf
3.
Higman
,
C.
, and
Van der Burgt
,
M.
,
2011
,
Gasification
,
Gulf Professional Publishing
, Burlington, MA.
4.
Sänger
,
A.
,
Jakobs
,
T.
,
Djordjevic
,
N.
, and
Kolb
,
T.
,
2014
, “
Effect of Primary Instability of a High Viscous Liquid Jet on the Spray Quality Generated by a Twin-Fluid Atomizer
,”
European Conference for Liquid Atomization and Spray System (ILASS)
, Bremen, Germany, Sept. 8–10, Paper No.
ABS-255
.https://www.researchgate.net/publication/278030369_Effect_of_primary_instability_of_a_high_viscous_liquid_jet_on_the_spray_quality_generated_by_a_twin-fluid_atomizer
5.
Jakobs
,
T.
,
Djordjevic
,
N.
,
Fleck
,
S.
,
Mancini
,
M.
,
Weber
,
R.
, and
Kolb
,
T.
,
2012
, “
Gasification of High Viscous Slurry R&D on Atomization and Numerical Simulation
,”
Appl. Energy
,
93
, pp.
449
456
.
6.
Sänger
,
A.
,
Jakobs
,
T.
,
Djordjevic
,
N.
, and
Kolb
,
T.
,
2015
, “
Experimental Investigation on the Influence of Ambient Pressure on Twin-Fluid Atomization of liquids With Various Viscosities
,”
International Conference for Liquid Atomization and Spray System (ICLASS)
, Tainan, Taiwan, Aug. 23–27, Paper No. A-2-1-124.
7.
Sänger
,
A.
,
Jakobs
,
T.
, and
Kolb
,
T.
,
2016
, “
Using Primary Instability Analysis for Determination of Apparent Liquid Viscosity at Jeet Breakup Atomizing Non-Newtonian Fluids
,”
European Conference for Liquid Atomization and Spray System (ILASS)
, Brighton, UK, Sept. 4–7, Paper No. AA-12.
8.
Gingold
,
R.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(3), pp.
375
389
.
9.
Monaghan
,
J. J.
, and
Kocharyan
,
A.
,
1995
, “
SPH Simulation of Multi-Phase Flow
,”
Comput. Phys. Commun.
,
87
(1–2), pp.
225
235
.
10.
Höfler
,
C.
,
Braun
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2011
, “
Towards the Numerical Prediction of Primary Atomization Using Smoothed Particle Hydrodynamics
,”
European Conference for Liquid Atomization and Spray System (ILASS)
, Estoril, Portugal, Sept. 5–7, Paper No. 1014.
11.
Takashima
,
T.
,
Ito
,
T.
,
Shigeta
,
M.
,
Izawa
,
S.
, and
Fukunishi
,
Y.
,
2012
, “
Simulation of Liquid Jet Breakup Process by Three-Dimensional Incompressible SPH Method
,”
Seventh International Conference on Computational Fluid Dynamics
(
ICCFD7
), Big Island, HI, July 9–13, pp.
9
13
.http://www.iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-2901_paper.pdf
12.
Braun
,
S.
,
Höfler
,
C.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2013
, “Modeling Fuel Injection in Gas Turbines Using the Meshless Smoothed Particle Hydrodynamics Method,”
ASME
Paper No. GT2013-94027.
13.
Braun
,
S.
,
Wieth
,
L.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2015
, “
Influence of Trailing Edge Height on Primary Atomization: Numerical Studies Applying the Smoothed Particle Hydrodynamics (SPH) Method
,”
International Conference for Liquid Atomization and Spray System (ICLASS)
, Tainan, Taiwan, Aug. 24–27, Paper No. D1-2-087.
14.
Dauch
,
T.
,
Braun
,
S.
,
Wieth
,
L.
,
Chaussonnet
,
G.
,
Keller
,
M.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2016
, “Computation of Liquid Fuel Atomization and Mixing by Means of the SPH Method: Application to a Jet Engine Fuel Nozzle,”
ASME
Paper No. GT2016-56023.
15.
Chaussonnet
,
G.
,
Braun
,
S.
,
Wieth
,
L.
,
Koch
,
R.
,
Bauer
,
H.-J.
,
Sänger
,
A.
,
Jakobs
,
T.
,
Dordjevic
,
N.
, and
Kolb
,
T.
,
2015
, “
SPH Simulation of a Twin-Fluid Atomizer Operating With a High Viscosity Liquid
,”
International Conference for Liquid Atomization and Spray System (ICLASS)
, Tainan, Taiwan, Aug. 24–27, Paper No.
D1-1-109
.https://www.researchgate.net/publication/281457458_SPH_Simulation_of_a_Twin-Fluid_Atomizer_Operating_with_a_High_Viscosity_Liquid
16.
Shao
,
S.
, and
Lo
,
E. Y.
,
2003
, “
Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows With a Free Surface
,”
Adv. Water Resour.
,
26
(
7
), pp.
787
800
.
17.
Fourtakas
,
G.
, and
Rogers
,
B.
,
2016
, “
Modelling Multi-Phase Liquid-Sediment Scour and Resuspension Induced by Rapid Flows Using Smoothed Particle Hydrodynamics (SPH) Accelerated With a Graphics Processing Unit (GPU)
,”
Adv. Water Resour.
,
92
(
Suppl. C
), pp.
186
199
.
18.
Rodriguez-Paz
,
M.
, and
Bonet
,
J.
,
2004
, “
A Corrected Smooth Particle Hydrodynamics Method for the Simulation of Debris Flows
,”
Num. Meth. Part. Diff. Equations
,
20
(
1
), pp.
140
163
.
19.
Laigle
,
D.
,
Lachamp
,
P.
, and
Naaim
,
M.
,
2007
, “
SPH-Based Numerical Investigation of Mudflow and Other Complex Fluid Flow Interactions With Structures
,”
Comput. Geosci.
,
11
(
4
), pp.
297
306
.
20.
Hosseini
,
S.
,
Manzari
,
M.
, and
Hannani
,
S.
,
2007
, “
A Fully Explicit Three-Step SPH Algorithm for Simulation of Non-Newtonian Fluid Flow
,”
Int. J. Numer. Methods Heat Fluid Flow
,
17
(
7
), pp.
715
735
.
21.
Shamsoddini
,
R.
,
Sefid
,
M.
, and
Fatehi
,
R.
,
2016
, “
Incompressible Sph Modeling and Analysis of Non-Newtonian Power-Law Fluids, Mixing in a Microchannel With an Oscillating Stirrer
,”
J. Mech. Sci. Technol.
,
30
(
1
), pp.
307
316
.
22.
Qiang
,
H.
,
Han
,
Y.
,
Wang
,
G.
, and
Liu
,
H.
,
2013
, “
Numerical Analysis of Atomization Process of Liquid With Power Law Model Based on SPH Method
,”
J. Propul. Technol.
,
34
(
2
), pp.
240
247
.http://en.cnki.com.cn/Article_en/CJFDTotal-TJJS201302017.htm
23.
Shadloo
,
M.
,
Oger
,
G.
, and
Le Touzé
,
D.
,
2016
, “
Smoothed Particle Hydrodynamics Method for Fluid Flows, Towards Industrial Applications: Motivations, Current State, and Challenges
,”
Comput. Fluids
,
136
, pp.
11
34
.
24.
Cross
,
M. M.
,
1965
, “
Rheology of Non-Newtonian Fluids: A New Flow Equation for Pseudoplastic Systems
,”
J. Colloid Sci.
,
20
(
5
), pp.
417
437
.
25.
Tsai
,
S. C.
, and
Viers
,
B.
,
1992
, “
Airblast Atomization of Viscous Newtonian Liquids Using Twin-Fluid Jet Atomizers of Various Designs
,”
ASME J. Fluids Eng.
,
114
(
1
), pp.
113
118
.
26.
Monaghan
,
J. J.
,
2005
, “
Smoothed Particle Hydrodynamics
,”
Rep. Prog. Phys.
,
68
(8), pp.
1703
1759
.
27.
Cleary
,
P.
, and
Monaghan
,
J. J.
,
1999
, “
Conduction Modelling Using Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
148
(1), pp.
227
264
.
28.
Maciá
,
F.
,
Antuono
,
M.
,
González
,
L. M.
, and
Colagrossi
,
A.
,
2011
, “
Theoretical Analysis of the No-Slip Boundary Condition Enforcement in SPH Methods
,”
Prog. Theor. Phys.
,
125
(
6
), pp.
1091
1121
.
29.
Sefid
,
M.
,
Fatehi
,
R.
, and
Shamsoddini
,
R.
,
2014
, “
A Modified Smoothed Particle Hydrodynamics Scheme to Model the Stationary and Moving Boundary Problems for Newtonian Fluid Flows
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031201
.
30.
Hu
,
X.
, and
Adams
,
N.
,
2006
, “
A Multi-Phase SPH Method for Macroscopic and Mesoscopic Flows
,”
J. Comput. Phys.
,
213
(2), pp.
844
861
.
31.
Szewc
,
K.
,
Pozorski
,
J.
, and
Minier
,
J.-P.
,
2012
, “
Analysis of the Incompressibility Constraint in the Smoothed Particle Hydrodynamics Method
,”
Int. J. Numer. Methods Eng.
,
92
(
4
), pp.
343
369
.
32.
Brackbill
,
J.
,
Kothe
,
D.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(2), pp.
335
354
.
33.
Adami
,
S.
,
Hu
,
X.
, and
Adams
,
N.
,
2010
, “
A New Surface-Tension Formulation for Multi-Phase SPH Using a Reproducing Divergence Approximation
,”
J. Comput. Phys.
,
229
(13), pp.
5011
5021
.
34.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(2), pp.
399
406
.
35.
Chaussonnet
,
G.
,
Braun
,
S.
,
Wieth
,
L.
,
Koch
,
R.
, and
Bauer
,
H.-J.
, 2015, “
Influence of Particle Disorder and Smoothing Length on SPH Operator Accuracy
,”
Tenth International SPHERIC Workshop
, Parma, Italy, June 16–18, pp. 31–38.https://www.researchgate.net/publication/282317546_Influence_of_particle_disorder_and_smoothing_length_on_SPH_operator_accuracy
36.
Lasheras
,
J.
,
Villermaux
,
E.
, and
Hopfinger
,
E. J.
,
1998
, “
Break-Up and Atomization of a Round Water Jet by a High-Speed Annular Air Jet
,”
J. Fluid Mech.
,
357
, pp.
351
379
.
37.
Takeda
,
H.
,
Miyama
,
S.
, and
Sekiya
,
M.
,
1994
, “
Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics
,”
Prog. Theor. Phys.
,
92
(
5
), pp.
939
960
.
38.
Braun
,
S.
,
L
,
W.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2015
, “
A Framework for Permeable Boundary Conditions in Sph: Inlet, Outlet, Periodicity
,”
Tenth International SPHERIC Workshop
, Parma, Italy, June 16–18, pp. 308–315.
39.
Quinlan
,
N. J.
,
Basa
,
M.
, and
Lastiwka
,
M.
,
2006
, “
Truncation Error in Mesh-Free Particle Methods
,”
Int. J. Numer. Methods Eng.
,
66
(
13
), pp.
2064
2085
.
40.
Falcone
,
A. M.
, and
Cataldo
,
J. C.
,
2003
, “
Entrainment Velocity in an Axisymmetric Turbulent Jet
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
620
627
.
41.
Farago
,
Z.
, and
Chigier
,
N.
,
1992
, “
Morphological Classification of Disintegration of Round Liquid Jets in a Coaxial Air Stream
,”
Atomization Sprays
,
2
(2), pp.
137
153
.
42.
Sivadas
,
V.
,
Heitor
,
M.
, and
Fernandes
,
R.
,
2007
, “
A Functional Correlation for the Primary Breakup Processes of Liquid Sheets Emerging From Air-Assist Atomizers
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
188
193
.
43.
Dimotakis
,
P. E.
,
1986
, “
Two-Dimensional Shear-Layer Entrainment
,”
AIAA J.
,
24
(
11
), pp.
1791
1796
.
44.
Raynal
,
L.
,
Villermaux
,
E.
,
Lasheras
,
J.
, and
Hopfinger
,
E.
,
1997
, “
Primary Instability in Liquid-Gas Shear Layers
,” 11th Symposium on Turbulent Shear Flows, Grenoble, France, Sept. 8–19.
45.
Marmottant
,
P.
, and
Villermaux
,
E.
,
2004
, “
On Spray Formation
,”
J. Fluid Mech.
,
498
, pp.
73
111
.
46.
Monkewitz
,
P. A.
,
1988
, “
A Note on Vortex Shedding From Axisymmetric Bluff Bodies
,”
J. Fluid Mech.
,
192
, pp.
561
575
.
47.
Mao
,
C.-P.
,
Oechsle
,
V.
, and
Chigier
,
N.
,
1987
, “
Drop Size Distribution and Air Velocity Measurements in Air Assist Swirl Atomizer Sprays
,”
ASME J. Fluids Eng.
,
109
(
1
), pp.
64
69
.
48.
Dravid
,
V.
,
Loke
,
P. B.
,
Corvalan
,
C. M.
, and
Sojka
,
P. E.
,
2008
, “
Drop Formation in Non-Newtonian Jets at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
130
(
8
), p.
081504
.
You do not currently have access to this content.