The paper describes the modeling and the experimental tests of a variable displacement vane pump for engine lubrication. The approach used for the simulation has involved three-dimensional (3D) commercial tools for tuning a zero-dimensional (0D) customized model implemented in the LMS Amesim® environment. Different leakage paths are considered and the axial clearances are variable to take into account the deformation of the pump cover, calculated through a finite element analysis with ANSYS. The vane tip clearances are calculated as function of the dynamic equilibrium equation of the vanes. The displacement control takes into account the internal forces on the stator due to the pressure in all variable chambers and to the contact force exerted by the vanes. The discharge coefficients in the resistive components have been tuned by means of a complete 3D transient model of the pump built with PumpLinx®. The tuned 0D model has been proved to be reliable for the determination of the steady-state flow-speed and flow-pressure curves, with a correct estimation of the internal leakages and of the pressure imposed by the displacement control. The pump has been also tested using a simplified circuit, and a fair agreement has been found in the evaluation of the delivery pressure ripple.

References

References
1.
Rundo
,
M.
, and
Nervegna
,
N.
,
2015
, “
Lubrication Pumps for Internal Combustion Engines: A Review
,”
Int. J. Fluid Power
,
16
(
2
), pp.
59
74
.
2.
Rundo
,
M.
, and
Squarcini
,
R.
,
2009
, “
Experimental Procedure for Measuring the Energy Consumption of IC Engine Lubricating Pumps During a NEDC Driving Cycle
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1690
1700
.
3.
Karmel
,
A. M.
,
1986
, “
A Study of the Internal Forces in a Variable-Displacement Vane-Pump—Part I: A Theoretical Analysis
,”
ASME J. Fluids Eng.
,
108
(
2
), pp.
227
232
.
4.
Karmel
,
A. M.
,
1986
, “
A Study of the Internal Forces in a Variable-Displacement Vane-Pump—Part II: A Parametric Study
,”
ASME J. Fluids Eng.
,
108
(
2
), pp.
233
237
.
5.
Karmel
,
A. M.
,
1988
, “
Modeling and Analysis of the Dynamics of a Variable-Displacement Vane-Pump With a Pivoting Cam
,”
ASME J. Dyn. Syst. Meas. Control
,
110
(
2
), pp.
197
202
.
6.
Karmel
,
A. M.
,
1988
, “
Stability and Regulation of a Variable-Displacement Vane-Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
110
(
2
), pp.
203
209
.
7.
Jang
,
J. S.
,
Kim
,
K. H.
,
Cho
,
M. R.
, and
Han
,
D. C.
,
2002
, “
The Characteristics of Pressure Ripple in Variable Displacement Vane Pumps: Comparison Between Theory and Experiment
,”
Proc. Inst. Mech. Eng. Part A
,
216
(
1
), pp.
89
96
.
8.
Mucchi
,
E.
,
Cremonini
,
G.
,
Delvecchio
,
S.
, and
Dalpiaz
,
G.
,
2013
, “
On the Pressure Ripple Measurement in Variable Displacement Vane Pumps
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091103
.
9.
Mancò
,
S.
,
Nervegna
,
N.
,
Rundo
,
M.
, and
Armenio
,
G.
,
2004
, “
Modelling and Simulation of Variable Displacement Vane Pumps for IC Engine Lubrication
,”
SAE
Paper No. 2004-01-1601.
10.
Cantore
,
G.
,
Paltrinieri
,
F.
,
Tosetti
,
F.
, and
Milani
,
M.
,
2008
, “
Lumped Parameters Numerical Simulation of a Variable Displacement Vane Pump for High Speed ICE Lubrication
,”
SAE
Paper No. 2008-01-2445.
11.
Barbarelli
,
S.
,
Bova
,
S.
, and
Piccione
,
R.
,
2009
, “
Zero-Dimensional Model and Pressure Data Analysis of a Variable-Displacement Lubricating Vane Pump
,”
SAE
Paper No. 2009-01-1859.
12.
Geist
,
B.
,
2011
, “
Dynamic Modeling of a Variable Displacement Vane Pump Within an Engine Oil Circuit
,”
ASME
Paper No. ICEF2011-60039.
13.
Truong
,
D. Q.
,
Ahn
,
K. K.
,
Trung
,
N. T.
, and
Lee
,
J. S.
,
2012
, “
Theoretical Investigation of a Variable Displacement Vane-Type Oil Pump
,”
Proc. Inst. Mech. Eng. Part C
,
227
(
3
), pp.
592
608
.
14.
Truong
,
D. Q.
,
Ahn
,
K. K.
,
Trung
,
N. T.
, and
Lee
,
J. S.
,
2013
, “
Performance Analysis of a Variable-Displacement Vane-Type Oil Pump for Engine Lubrication Using a Complete Mathematical Model
,”
Proc. Inst. Mech. Eng. Part D
,
227
(
10
), pp.
1414
1430
.
15.
Harrison
,
J.
,
Aihara
,
R.
,
Eshraghi
,
M.
, and
Dmitrieva
,
I.
,
2014
, “
Modeling Engine Oil Variable Displacement Vane Pumps in 1D to Predict Performance, Pulsations, and Friction
,”
SAE
Paper No. 2014-01-1086.
16.
Bianchi
,
G.
,
Fatigati
,
F.
,
Murgia
,
S.
, and
Cipollone
,
R.
,
2017
, “
Design and Analysis of a Sliding Vane Pump for Waste Heat to Power Conversion Systems Using Organic Fluids
,”
Appl. Therm. Eng.
,
124
, pp.
1038
1048
.
17.
Jiang
,
Y.
, and
Perng
,
C. Y.
,
1997
, “
An Efficient 3D Transient Computational Model for Vane Oil Pump and Gerotor Oil Pump Simulations
,”
SAE
Paper No. 970841.
18.
Ding
,
H.
,
Visser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011101
.
19.
Wang
,
D.
,
Ding
,
H.
,
Jiang
,
Y.
, and
Xiang
,
X.
,
2012
, “
Numerical Modeling of Vane Oil Pump With Variable Displacement
,”
SAE
Paper No. 2012-01-0637.
20.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Olivetti
,
M.
,
2014
, “
A Tridimensional CFD Analysis of the Oil Pump of an High Performance Engine
,”
SAE
Paper No. 2014-01-1712.
21.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Santato
,
L.
,
2015
, “
Analysis and Simulation of an Oil Lubrication Pump for Internal Combustion Engines
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051102
.
22.
Hsieh
,
C. F.
,
2015
, “
Flow Characteristics of Gerotor Pumps With Novel Variable Clearance Designs
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041107
.
23.
Strasser
,
W.
,
2006
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
476
484
.
24.
del Campo
,
D.
,
Castilla
,
R.
,
Raush
,
G. A.
,
Gamez-Montero
,
P. J.
, and
Codina
,
E.
,
2012
, “
Numerical Analysis of External Gear Pumps Including Cavitation
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081105
.
25.
Castilla
,
R.
,
Gamez-Montero
,
P. J.
,
del Campo
,
D.
,
Raush
,
G.
,
Garcia-Vilchez
,
M.
, and
Codina
,
E.
,
2015
, “
Three-Dimensional Numerical Simulation of an External Gear Pump With Decompression Slot and Meshing Contact Point
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041105
.
26.
Ghazanfarian
,
J.
, and
Ghanbari
,
D.
,
2014
, “
Computational Fluid Dynamics Investigation of Turbulent Flow Inside a Rotary Double External Gear Pump
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021101
.
27.
Castilla
,
R.
,
Gamez-Montero
,
P. J.
,
Raush
,
G.
, and
Codina
,
E.
,
2017
, “
Method for Fluid Flow Simulation of a Gerotor Pump Using OpenFOAM
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111101
.
28.
Bianchi
,
G.
,
Rane
,
S.
,
Kovacevic
,
A.
, and
Cipollone
,
R.
,
2017
, “
Deforming Grid Generation for Numerical Simulations of Fluid Dynamics in Sliding Vane Rotary Machines
,”
Adv. Eng. Software
,
112
, pp.
180
191
.
29.
Casoli
,
P.
,
Anthony
,
A.
, and
Rigosi
,
M.
,
2011
, “
Modeling of an Excavator System—Semi Empirical Hydraulic Pump Model
,”
SAE Int. J. Commer. Veh.
,
4
(
1
), pp.
242
255
.
30.
Rundo
,
M.
,
2010
, “
Piloted Displacement Controls for ICE Lubricating Vane Pumps
,”
SAE Int. J. Fuels Lubr.
,
2
(
2
), pp.
176
184
.
31.
Rundo
,
M.
,
2017
, “
Models for Flow Rate Simulation in Gear Pumps: A Review
,”
Energies
,
10
(
9
), p.
1261
.
32.
Gherardini
,
F.
,
Zardin
,
B.
, and
Leali
,
F.
,
2016
, “
A Parametric CAD-Based Method for Modelling and Simulation of Positive Displacement Machines
,”
J. Mech. Sci. Technol.
,
30
(
7
), p.
3253
.
33.
Rundo
,
M.
, and
Squarcini
,
R.
,
2013
, “
Modelling and Simulation of Brake Booster Vacuum Pumps
,”
SAE Int. J. Commer. Veh.
,
6
(
1
), pp.
236
248
.
34.
Altare
,
G.
, and
Rundo
,
M.
,
2017
, “
Advances in Simulation of Gerotor Pumps: An Integrated Approach
,”
Proc. Inst. Mech. Eng. Part C
,
231
(
7
), pp.
1221
1236
.
35.
Rundo
,
M.
,
2010
, “
Energy Consumption in ICE Lubricating Gear Pumps
,”
SAE
Paper No. 2010-01-2146.http://porto.polito.it/2372601/1/2010_01_2146.pdf
36.
Rundo
,
M.
, and
Corvaglia
,
A.
,
2016
, “
Lumped Parameters Model of a Crescent Pump
,”
Energies
,
9
(
11
), p.
876
.
37.
Singhal
,
A. K.
,
Athavale
,
M. H.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
38.
Altare
,
G.
, and
Rundo
,
M.
,
2016
, “
Computational Fluid Dynamics Analysis of Gerotor Lubricating Pumps at High Speed: Geometric Features Influencing the Filling Capability
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111101
.
39.
Dhar
,
S.
,
Afjeh
,
H.
,
Srinivasan
,
C.
,
Ranganathan
,
R.
, and
Jiang
,
Y.
,
2016
, “
Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System
,”
SAE Int. J. Engines
,
9
(
3
), pp.
1854
1862
.
You do not currently have access to this content.