This paper proposes a novel orifice flow model for non-Newtonian fluids. The orifice model is developed for sharp orifices with small apertures (orifice to pipe diameter ratio: 0.04 ≤ β ≤ 0.16) for which predictive models are not present in the literature. The orifice flow experiment is conducted with three different orifices and three different fluids. From the experimental data, a correlation is developed that relates Euler number to Reynolds number and orifice diameter ratio. It also accounts for elastic effects of the fluid on orifice flow by including Weissenberg number in the model. The developed model predicts the experimental data within reasonable accuracy.

References

References
1.
EN ISO,
2003
, “
Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full
,” British Standards Institution, London, Standard No.
EN ISO 5167-1:2003
.https://www.iso.org/standard/28064.html
2.
Vacca
,
A.
, and
Guidetti
,
M.
,
2011
, “
Modelling and Experimental Validation of External Spur Gear Machines for Fluid Power Applications
,”
Simul. Modell. Pract. Theory
,
19
(
9
), pp.
2007
2031
.
3.
Vacca
,
A.
,
Klop
,
R.
, and
Ivantysynova
,
M.
,
2010
, “
A Numerical Approach for the Evaluation of the Effects of Air Release and Vapour Cavitation on Effective Flow Rate of Axial Piston Machines
,”
Int. J. Fluid Power
,
11
(
1
), pp.
33
45
.
4.
Jenkins
,
R. P.
, and
Ivantysynova
,
M.
,
2016
, “
Investigation of Instability of a Pressure Compensated Vane Pump
,”
ASME
Paper No. FPNI2016-1535.
5.
Idelchik
,
I. E.
,
1966
,
Handbook of Hydraulic Resistance
,
Israel Program for Scientific Translations
,
Jerusalem, Israel
.
6.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
.
7.
Wu
,
D.
,
Burton
,
R.
, and
Schoenau
,
G.
,
2002
, “
An Empirical Discharge Coefficient Model for Orifice Flow
,”
Int. J. Fluid Power
,
3
(
3
), pp.
13
19
.
8.
Borghi
,
M.
,
Milani
,
M.
, and
Paoluzzi
,
R.
,
2000
, “
Stationary Axial Flow Force Analysis on Compensated Spool Valves
,”
Int. J. Fluid Power
,
1
(
1
), pp.
17
25
.
9.
Johnston
,
D. N.
,
Edge
,
K. A.
, and
Vaughan
,
N. D.
,
1991
, “
Experimental Investigation of Flow and Force Characteristics of Hydraulic Poppet and Disc Valves
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
205
(
31
), pp.
161
171
.
10.
Arun
,
N.
,
Malavarayan
,
S.
, and
Kaushik
,
M.
,
2010
, “
CFD Analysis on Discharge Co-Efficient During Non-Newtonian Flows Through Orifice Meter
,”
Int. J. Eng. Sci. Technol.
,
2
(
7
), pp.
3151
3164
.http://www.ijest.info/docs/IJEST10-02-07-113.pdf
11.
Karthik
,
G. S. Y.
,
Kumar
,
K. J.
, and
Seshadri
,
V.
,
2015
, “
Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD
,”
Int. J. Eng. Tech. Res.
,
3
(5), pp. 162–167.https://www.erpublication.org/published_paper/IJETR032190.pdf
12.
Jin
,
Z.
,
Gao
,
Z.
,
Zhang
,
M.
, and
Qian
,
J.
,
2017
, “
Pressure Drop Analysis of Pilot-Control Globe Valve With Different Structural Parameters
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091102
.
13.
Morris
,
S. D.
,
1985
, “
Two Phase Pressure Drop Across Valves and Orifice Plates
,”
European Two Phase Flow Group Meeting
, Southampton, UK.
14.
Fossa
,
M.
, and
Guglielmini
,
G.
,
2002
, “
Pressure Drop and Void Fraction Profiles During Horizontal Flow Through Thin and Thick Orifices
,”
Exp. Therm. Fluid Sci.
,
26
(
5
), pp.
513
523
.
15.
Roul
,
M. K.
, and
Dash
,
S. K.
,
2012
, “
Single-Phase and Two-Phase Flow Through Thin and Thick Orifices in Horizontal Pipes
,”
ASME J. Fluids Eng.
,
134
(
9
), p.
091301
.
16.
Zeghloul
,
A.
,
Azzi
,
A.
,
Saidj
,
F.
,
Messilem
,
A.
, and
Azzopardi
,
B. J.
,
2017
, “
Pressure Drop Through Orifices for Single- and Two-Phase Vertically Upward Flow—Implication for Metering
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031302
.
17.
Salas-Valerio
,
W. F.
, and
Steffe
,
J. F.
,
1990
, “
Orifice Discharge Coefficients for Power-Law Fluids
,”
J. Food Process Eng.
,
12
(
2
), pp.
89
98
.
18.
McNeil
,
D. A.
,
Addlesee
,
J.
, and
Stuart
,
A.
,
1999
, “
An Experimental Study of Viscous Flows in Contractions
,”
J. Loss Prev. Process Ind.
,
12
(
4
), pp.
249
258
.
19.
Pal
,
R.
,
1993
, “
Flow of Oil-in-Water Emulsions Through Orifice and Venturi Meters
,”
Ind. Eng. Chem. Res.
,
32
(
6
), pp.
1212
1217
.
20.
Edwards
,
M. F.
,
Jadallah
,
M. S. M.
, and
Smith
,
R.
,
1985
, “
Head Losses in Pipe Fittings at Low Reynolds Numbers
,”
Chem. Eng. Res. Des.
,
63
(
1
), pp.
43
50
.http://archive.icheme.org/cgi-bin/somsid.cgi?session=842673B&page=63ap0043&type=framedpdf
21.
Samanta
,
A. K.
,
Banerjee
,
T. K.
, and
Das
,
S. K.
,
1999
, “
Pressure Losses in Orifices for the Flow of Gas-Non-Newtonian Liquids
,”
Can. J. Chem. Eng.
,
77
(
3
), pp.
579
583
.
22.
Bandyopadhyay
,
T. K.
, and
Das
,
S. K.
,
2007
, “
Non-Newtonian Pseudoplastic Liquid Flow Through Small Diameter Piping Components
,”
J. Pet. Sci. Eng.
,
55
(
1
), pp.
156
166
.
23.
Bohra
,
L. K.
,
2004
, “
Flow and Pressure Drop of Highly Viscous Fluids in Small Aperture Orifices
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/handle/1853/7269?show=full
24.
Ntamba Ntamba
,
B.
, and
Fester
,
V.
,
2012
, “
Pressure Losses and Limiting Reynolds Numbers for Non-Newtonian Fluids in Short Square-Edged Orifice Plates
,”
ASME J. Fluids Eng.
,
134
(
9
), p.
091204
.
25.
Chowdhury
,
M. R.
, and
Fester
,
V. G.
,
2012
, “
Modeling Pressure Losses for Newtonian and Non-Newtonian Laminar and Turbulent Flow in Long Square Edged Orifices
,”
Chem. Eng. Res. Des.
,
90
(
7
), pp.
863
869
.
26.
Slatter
,
P.
,
2000
, “
The Role of Rheology in the Pipelining of Mineral Slurries
,”
Miner. Process. Extr. Metall. Rev.
,
20
(
1
), pp.
281
300
.
27.
Eisenbrand
,
G. D.
, and
Goddard
,
J. D.
,
1982
, “
Birefringence and Pressure Drop for the Orifice Flow of a Polymer Solution
,”
J. Non-Newtonian Fluid Mech.
,
11
(
1
), pp.
37
52
.
28.
Rothstein
,
J. P.
, and
McKinley
,
G. H.
,
2001
, “
The Axisymmetric Contraction–Expansion: The Role of Extensional Rheology on Vortex Growth Dynamics and the Enhanced Pressure Drop
,”
J. Non-Newtonian Fluid Mech.
,
98
(
1
), pp.
33
63
.
You do not currently have access to this content.