Flow drag reduction induced by chemical additives, more commonly called drag-reducing agents (DRAs), has been studied for many years, but few studies can manifest the mechanism of this phenomenon. In this paper, a new mathematical model is proposed to predict the upper limit of drag reduction with polymer DRAs in a turbulent pipe flow. The model is based on the classic finitely extensible nonlinear elastic-Peterlin (FENE-P) theory, with the assumption that all vortex structures disappear in the turbulent flow, i.e., complete laminarization is achieved. With this model, the maximum drag reduction by a DRA at a given concentration can be predicted directly with several parameters, i.e., bulk velocity of the fluid, pipe size, and relaxation time of the DRA. Besides, this model indicates that both viscosity and elasticity contribute to the drag reduction: before a critical concentration, both viscosity and elasticity affect the drag reduction positively; after this critical concentration, elasticity still works as before but viscosity affects drag reduction negatively. This study also proposes a correlation format between drag reduction measured in a rheometer and that estimated in a pipeline. This provides a convenient way of pipeline drag reduction estimation with viscosity and modulus of the fluids that can be easily measured in a rheometer.

References

1.
Toms
,
B. A.
,
1948
, “
Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers
,”
First International Congress on Rheology
, Amsterdam, The Netherlands, Sept. 21–24, pp.
135
141
.
2.
Burger
,
E. D.
,
Munk
,
W. R.
, and
Wahl
,
H. A.
,
1982
, “
Flow Increase in the Trans Alaska Pipeline Through Use of a Polymeric Drag-Reducing Additive
,”
J. Pet. Technol.
,
34
(
2
), pp.
377
386
.
3.
Hadri
,
F.
,
Besq
,
A.
,
Guillou
,
S.
, and
Makhloufi
,
R.
,
2011
, “
Temperature and Concentration Influence on Drag Reduction of Very Low Concentrated CTAC/NaSal Aqueous Solution in Turbulent Pipe Flow
,”
J Non-Newton Fluid
,
166
(
5
), pp.
326
331
.
4.
Lioumbas
,
J. S.
,
Kolimenos
,
C.
, and
Paras
,
S. V.
,
2009
, “
Liquid Layer Characteristics in Gas–Liquid Flow in Slightly Inclined Pipes: Effect of Non-Ionic Surfactant Additives
,”
Chem. Eng. Sci.
,
64
(
24
), pp.
5162
5172
.
5.
Kim
,
N. J.
,
Kim
,
S.
,
Lim
,
S. H.
,
Chen
,
K.
, and
Chun
,
W.
,
2009
, “
Measurement of Drag Reduction in Polymer Added Turbulent Flow
,”
Int. Commun. Heat Mass Transfer
,
36
(
10
), pp.
1014
1019
.
6.
Karami
,
H. R.
, and
Mowla
,
D.
,
2012
, “
Investigation of the Effects of Various Parameters on Pressure Drop Reduction in Crude Oil Pipelines by Drag Reducing Agents
,”
J. Non-Newton Fluid
,
177–178
, pp.
37
45
.
7.
Daas
,
M.
, and
Bleyle
,
D.
,
2006
, “
Computational and Experimental Investigation of the Drag Reduction and the Components of Pressure Drop in Horizontal Slug Flow Using Liquids of Different Viscosities
,”
Exp. Therm. Fluid Sci.
,
30
(
4
), pp.
307
317
.
8.
Campolo
,
M.
,
Simeoni
,
M.
,
Lapasin
,
R.
, and
Soldati
,
A.
,
2015
, “
Turbulent Drag Reduction by Biopolymers in Large Scale Pipes
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041102
.
9.
Li
,
F. C.
,
Yu
,
B.
,
Wei
,
J. J.
, and
Kawaguchi
,
Y.
,
2012
,
Turbulent Drag Reduction by Surfactant Additives
,
Wiley
,
Singapore
, Chap. 1.
10.
De Gennes
,
P. G.
,
1990
,
Introduction to Polymer Dynamics
,
University Press
,
Cambridge, UK
, Chap. 4.
11.
Resende
,
P. R.
,
Kim
,
K.
,
Younis
,
B. A.
,
Sureshkumar
,
R.
, and
Pinho
,
F. T.
,
2011
, “
A FENE-P k–ε Turbulence Model for Low and Intermediate Regimes of Polymer-Induced Drag Reduction
,”
J. Non-Newton Fluid.
,
166
(
12
), pp.
639
660
.
12.
Pinho
,
F. T.
,
Li
,
C. F.
,
Younis
,
B. A.
, and
Sureshkumar
,
R.
,
2008
, “
A Low Reynolds Number Turbulence Closure for Viscoelastic Fluids
,”
J. Non-Newton Fluid
,
154
(
2
), pp.
89
108
.
13.
Housiadas
,
K. D.
, and
Beris
,
A. N.
,
2004
, “
An Efficient Fully Implicit Spectral Scheme for DNS of Turbulent Viscoelastic Channel Flow
,”
J. Non-Newton Fluid
,
122
(
1
), pp.
243
262
.
14.
Iaccarino
,
G.
,
Shaqfeh
,
E. S.
, and
Dubief
,
Y.
,
2010
, “
Reynolds-Averaged Modeling of Polymer Drag Reduction in Turbulent Flows
,”
J. Non-Newton Fluid
,
165
(
7
), pp.
376
384
.
15.
Barenblatt
,
G. I.
,
2008
, “
A Mathematical Model of Turbulent Drag Reduction by High-Molecular-Weight Polymeric Additives in a Shear Flow
,”
Phys. Fluids
,
20
(
9
), p.
091702
.
16.
Vincenzi
,
D.
,
Jin
,
S.
,
Bodenschatz
,
E.
, and
Collins
,
L. R.
,
2007
, “
Stretching of Polymers in Isotropic Turbulence: A Statistical Closure
,”
Phys. Rev. Lett.
,
98
(
2
), p.
024503
.
17.
Lumley
,
J. L.
,
1969
, “
Drag Reduction by Additives
,”
Annu. Rev. Fluid Mech.
,
1
, pp.
367
384
.
18.
Zhang
,
M.
,
Lashgari
,
I.
,
Zaki
,
T. A.
, and
Brandt
,
L.
,
2013
, “
Linear Stability Analysis of Channel Flow of Viscoelastic Oldroyd-B and FENE-P Fluids
,”
J. Fluid Mech.
,
737
, pp.
249
279
.
19.
Warholic
,
M. D.
,
Heist
,
D. K.
,
Katcher
,
M.
, and
Hanratty
,
T. J.
,
2001
, “
A Study With Particle-Image Velocimetry of the Influence of Drag-Reducing Polymers on the Structure of Turbulence
,”
Exp. Fluids
,
31
(
5
), pp.
474
483
.
20.
Amarouchene
,
Y.
, and
Kellay
,
H.
,
2002
, “
Polymers in 2D Turbulence: Suppression of Large Scale Fluctuations
,”
Phys. Rev. Lett.
,
89
(
10
), p.
104502
.
21.
Iwamoto
,
K.
,
Fukagata
,
K.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
,
2005
, “
Friction Drag Reduction Achievable by Near-Wall Turbulence Manipulation at High Reynolds Numbers
,”
Phys. Fluids
,
17
(
1
), p.
011702
.
22.
Samanta
,
G.
,
Beris
,
A. N.
,
Handler
,
R. A.
, and
Housiadas
,
K. D.
,
2009
, “
Velocity and Conformation Statistics Based on Reduced Karhunen–Loeve Projection Data From DNS of Viscoelastic Turbulent Channel Flow
,”
J. Non-Newton Fluid
,
160
(
1
), pp.
55
63
.
23.
Corredor
,
F. E. R.
,
Bizhani
,
M.
, and
Kuru
,
E.
,
2015
, “
Experimental Investigation of Drag Reducing Fluid Flow in Annular Geometry Using Particle Image Velocimetry Technique
,”
ASME J. Fluids Eng.
,
137
(
8
), p.
081103
.
24.
Kostic
,
M.
,
1994
, “
The Ultimate Asymptotes and Possible Causes of Friction Drag and Heat Transfer Reduction Phenomena
,”
J. Energy Heat Mass Transfer
,
16
, pp.
1
14
.
25.
Shao
,
X. M.
,
Lin
,
J. Z.
,
Wu
,
T.
, and
Li
,
Y. L.
,
2002
, “
Experimental Research on Drag Reduction by Polymer Additives in a Turbulent Pipe Flow
,”
Can. J. Chem. Eng.
,
80
(
2
), pp.
293
298
.
26.
Li
,
F. C.
,
Kawaguchi
,
Y.
,
Segawa
,
T.
, and
Hishida
,
K.
,
2005
, “
Reynolds-Number Dependence of Turbulence Structures in a Drag-Reducing Surfactant Solution Channel Flow Investigated by Particle Image Velocimetry
,”
Phys. Fluids
,
17
(
7
), p.
075104
.
27.
Paschkewitz
,
J. S.
,
Dimitropoulos
,
C. D.
,
Hou
,
Y. X.
,
Somandepalli
,
V. S. R.
,
Mungal
,
M. G.
,
Shaqfeh
,
E. S.
, and
Moin
,
P.
,
2005
, “
An Experimental and Numerical Investigation of Drag Reduction in a Turbulent Boundary Layer Using a Rigid Rod-like Polymer
,”
Phys. Fluids
,
17
(
8
), p.
085101
.
28.
Tamano
,
S.
, and
Itoh
,
M.
,
2011
, “
Comparison of Turbulence Structures at Large and Small Drag Reduction Ratios in Turbulent Boundary Layer of Surfactant Solutions
,”
J. Turbul.
,
12
(
18
), pp.
1
22
.
29.
Bizhani
,
M.
,
Corredor
,
F. E. R.
, and
Kuru
,
E.
,
2015
, “
An Experimental Study of Turbulent Non-Newtonian Fluid Flow in Concentric Annuli Using Particle Image Velocimetry Technique
,”
Flow Turbul. Combust.
,
94
(
3
), pp.
527
554
.
30.
Japper-Jaafar
,
A.
,
Escudier
,
M. P.
, and
Poole
,
R. J.
,
2010
, “
Laminar, Transitional and Turbulent Annular Flow of Drag-Reducing Polymer Solutions
,”
J. Non-Newton Fluid
,
165
(
19
), pp.
1357
1372
.
31.
Procaccia
,
I.
,
L'vov
,
V. S.
, and
Benzi
,
R.
,
2008
, “
Colloquium: Theory of Drag Reduction by Polymers in Wall-Bounded Turbulence
,”
Rev. Mod. Phys
,
80
(
1
), pp.
225
247
.
32.
Japper-Jaafar
,
A.
,
Escudier
,
M. P.
, and
Poole
,
R. J.
,
2009
, “
Turbulent Pipe Flow of a Drag-Reducing Rigid “Rod-Like” Polymer Solution
,”
J. Non-Newton Fluid
,
161
(
1
), pp.
86
93
.
33.
Malkin
,
A. I.
,
Malkin
,
A. Y.
, and
Isayev
,
A. I.
,
2006
,
Rheology Concepts, Methods, and Applications
,
ChemTec Publishing
,
Toronto, CA
, Chap. 2.
34.
Lim
,
S. T.
,
Choi
,
H. J.
,
Lee
,
S. Y.
,
So
,
J. S.
, and
Chan
,
C. K.
,
2003
, “
λ-DNA Induced Turbulent Drag Reduction and Its Characteristics
,”
Macromolecules
,
36
(
14
), pp.
5348
5354
.
35.
Hong
,
C. H.
,
Jang
,
C. H.
, and
Choi
,
H. J.
,
2015
, “
Turbulent Drag Reduction With Polymers in Rotating Disk Flow
,”
Polymers
,
7
(
7
), pp.
1279
1298
.
36.
Gasljevic
,
K.
,
Aguilar
,
G.
, and
Matthys
,
E. F.
,
1999
, “
An Improved Diameter Scaling Correlation for Turbulent Flow of Drag-Reducing Polymer Solutions
,”
J. Non-Newton Fluid
,
84
(
2
), pp.
131
148
.
37.
Zhang
,
Y.
,
Qi
,
Y.
, and
Zakin
,
J. L.
,
2005
, “
Headgroup Effect on Drag Reduction and Rheological Properties of Micellar Solutions of Quaternary Ammonium Surfactants
,”
Rheol. Acta.
,
45
(
1
), pp.
42
58
.
38.
Kamel
,
A.
, and
Shah
,
S. N.
,
2009
, “
Effects of Salinity and Temperature on Drag Reduction Characteristics of Polymers in Straight Circular Pipes
,”
J. Pet. Sci. Eng.
,
67
(
1
), pp.
23
33
.
39.
Dosunmu
,
I. T.
, and
Shah
,
S. N.
,
2014
, “
Turbulent Flow Behavior of Surfactant Solutions in Straight Pipes
,”
J. Pet. Sci. Eng.
,
124
, pp.
323
330
.
40.
Tamano
,
S.
,
Ikarashi
,
H.
,
Morinishi
,
Y.
, and
Taga
,
K.
,
2015
, “
Drag Reduction and Degradation of Nonionic Surfactant Solutions With Organic Acid in Turbulent Pipe Flow
,”
J. Non-Newton Fluid
,
215
, pp.
1
7
.
41.
Abubakar
,
A.
,
Al-Hashmi
,
A. R.
,
Al-Wahaibi
,
T.
,
Al-Wahaibi
,
Y.
,
Al-Ajmi
,
A.
, and
Eshrati
,
M.
,
2014
, “
Parameters of Drag Reducing Polymers and Drag Reduction Performance in Single-Phase Water Flow
,”
Adv. Mech. Eng.
,
6
, p.
202073
.
42.
Guersoni
,
V. C. B.
,
Bannwart
,
A. C.
,
Destefani
,
T.
, and
Sabadini
,
E.
,
2015
, “
Comparative Study of Drag Reducers for Light Hydrocarbon Flow
,”
Pet. Sci. Technol.
,
33
(
8
), pp.
943
951
.
You do not currently have access to this content.