High-speed flows with shock waves impinging on turbulent boundary layers pose severe challenge to current computational methods and models. Specifically, the peak wall heat flux is grossly overpredicted by Reynolds-averaged Navier–Stokes (RANS) simulations using conventional turbulence models. This is because of the constant Prandtl number assumption, which fails in the presence of strong adverse pressure gradient (APG) of the shock waves. Experimental data suggest a reduction of the turbulent Prandtl number in boundary layers subjected to APG. We use a phenomenological approach to develop an algebraic model based on the available data and cast it in a form that can be used in high-speed flows with shock-induced flow separation. The shock-unsteadiness (SU) k–ω model is used as the baseline, since it gives good prediction of flow separation and the regions of APG. The new model gives marked improvement in the peak heat flux prediction near the reattachment point. The formulation is applicable to both attached and separated flows. Additionally, the simplicity of the formulation makes it easily implementable in existing numerical codes.

References

References
1.
Hanjalic
,
K.
,
2005
, “
Will RANS Survive LES? A View of Perspectives
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
831
839
.
2.
Morden
,
J. A.
,
Hemida
,
H.
, and
Baker
,
C. J.
,
2015
, “
Comparison of RANS and Detached Eddy Simulation Results to Wind-Tunnel Data for the Surface Pressures Upon a Class 43 High-Speed Train
,”
ASME J. Fluids Eng.
,
137
(
4
), p. 041108.
3.
Jaunet
,
V.
,
Debieve
,
J. F.
, and
Dupont
,
P.
,
2012
, “
Experimental Investigation of an Oblique Shock Reflection With Separation Over a Heated Wall
,”
AIAA
Paper No. 2012-1095.
4.
Ono
,
D.
,
Handa
,
T.
, and
Masuda
,
M.
,
2013
, “
Three-Dimensional Normal Shock-Wave/Boundary-Layer Interaction in a Diffuser
,”
ASME J. Fluids Eng.
,
135
(
4
), p. 041105.
5.
Chung
,
K. M.
,
2001
, “
Investigation on Turbulent Expansion-Corner Flow With Shock Impingement
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
139
144
.
6.
Lindblad
,
I.
,
Wallin
,
S.
,
Johansson
,
A. V.
,
Friedrich
,
R.
,
Lechner
,
R.
,
Krogmann
,
P.
,
Schuelein
,
E.
,
Courty
,
J. C.
,
Ravachol
,
M.
, and
Giordano
,
D. F.
,
1998
, “
A Prediction Method for High Speed Turbulent Separated Flows With Experimental Verification
,”
AIAA
Paper No. 98-2547.
7.
Gnoffo
,
P. A.
,
Berry
,
S. A.
, and
Van Norman
,
J. W.
,
2013
, “
Uncertainty Assessments of Hypersonic Shock Wave-Turbulent Boundary-Layer Interactions at Compression Corners
,”
J. Spacecr. Rockets
,
50
(
1
), pp.
69
95
.
8.
Quadros
,
R.
, and
Sinha
,
K.
,
2016
, “
Modelling of Turbulent Energy Flux in Canonical Shock-Turbulence Interaction
,”
Int. J. Heat Fluid Flow
,
61
(
Pt. B
), pp.
626
635
.
9.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k–ω Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.
10.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.
11.
Blackwell
,
B. F.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
,
1972
, “
The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Heat Transfer Behavior With Adverse Pressure Gradients
,” Stanford University, Stanford, CA, Report No.
SU-HMT-16
.https://ntrs.nasa.gov/search.jsp?R=19730006564
12.
Xiao
,
X.
,
Edwards
,
J. R.
,
Hassan
,
A. H.
, and
Gaffney
,
R. L.
,
2007
, “
Role of Turbulent Prandtl Numbers on Heat Flux at Hypersonic Mach Numbers
,”
AIAA J.
,
45
(
4
), pp.
806
813
.
13.
Dash
,
S. M.
,
Brinckman
,
K. W.
, and
Ott
,
J. D.
,
2012
, “
Turbulence Modeling Advances and Validation for High Speed Aeropropulsive Flows
,”
Int. J. Aeroacoustics
,
11
(
7–8
), pp.
813
850
.
14.
Sinha
,
K.
,
Mahesh
,
K.
, and
Candler
,
G. V.
,
2003
, “
Modeling Shock Unsteadiness in Shock/Turbulence Interaction
,”
Phys. Fluids
,
15
(
8
), pp.
2290
2297
.
15.
Sinha
,
K.
,
Mahesh
,
K.
, and
Candler
,
G. V.
,
2005
, “
Modeling the Effect of Shock Unsteadiness in Shock/Turbulent Boundary-Layer Interactions
,”
AIAA J.
,
43
(
3
), pp.
586
594
.
16.
Pasha
,
A. A.
, and
Sinha
,
K.
,
2008
, “
Shock-Unsteadiness Model Applied to Oblique Shock Wave/Turbulent Boundary-Layer Interaction
,”
Int. J. Comput. Fluid Dyn.
,
22
(
8
), pp.
569
582
.
17.
Pasha
,
A. A.
, and
Sinha
,
K.
,
2012
, “
Simulation of Hypersonic Shock/Turbulent Boundary-Layer Interactions Using Shock-Unsteadiness Model
,”
J. Propul. Power
,
28
(
1
), pp.
46
60
.
18.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
3rd ed.
,
DCW Industries
,
La Canada, CA
.
19.
Forsythe
,
J.
,
Hoffmann
,
K.
, and
Damevin
,
H. M.
,
1998
, “
An Assessment of Several Turbulence Models for Supersonic Compression Ramp Flow
,”
AIAA
Paper No. 98-2648.
20.
Coakley
,
T.
, and
Huang
,
P.
,
1992
, “
Turbulence Modeling for High Speed Flows
,”
30th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9, pp. 1–15.
21.
MacCormack
,
R. W.
, and
Candler
,
G. V.
,
1989
, “
The Solution of the Navier–Stokes Equations Using Gauss-Seidel Line Relaxation
,”
Comput. Fluids
,
17
(
1
), pp.
135
150
.
22.
Sinha
,
K.
, and
Candler
,
G. V.
,
1998
, “
Convergence Improvement of Two-Equation Turbulence Model Calculations
,”
AIAA
Paper No. 1998-2649.
23.
Wright
,
M. J.
,
Candler
,
G. V.
, and
Bose
,
D.
,
1998
, “
Data-Parallel Line Relaxation Method for the Navier–Stokes Equations
,”
AIAA J.
,
36
(
9
), pp.
1603
1609
.
24.
Schulein
,
E.
,
2006
, “
Skin Friction and Heat Flux Measurements in Shock/Boundary Layer Interaction Flows
,”
AIAA J.
,
44
(
8
), pp.
1732
1742
.
25.
Marvin
,
J. G.
,
Brown
,
J. L.
, and
Gnoffo
,
P. A.
,
2013
, “
Experimental Database With Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions
,” NASA Ames Research Center, Moffett Field, CA, Report No.
TM-2013-216604
.https://ntrs.nasa.gov/search.jsp?R=20140010683
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
27.
Brown
,
J. L.
,
2011
, “
Shock Wave Impingement on Boundary Layers at Hypersonic Speeds: Computational Analysis and Uncertainty
,”
AIAA
Paper No. 2011-3143.
28.
Back
,
L. H.
, and
Cuffel
,
R. F.
,
1970
, “
Changes in Heat Transfer From Turbulent Boundary Layers Interacting With Shock Waves and Expansion Waves
,”
AIAA J.
,
8
(
10
), pp.
1871
1873
.
29.
Bernardini
,
M.
,
Asproulias
,
I.
,
Larsson
,
J.
,
Pirozzoli
,
S.
, and
Grasso
,
F.
,
2016
, “
Heat Transfer and Wall Temperature Effects in Shock Wave Turbulent Boundary Layer Interactions
,”
Phys. Rev. Fluids
,
1
(
8
), p. 084403.
30.
Back
,
L. H.
, and
Cuffel
,
R. F.
,
1976
, “
Shock Wave/Turbulent Boundary-Layer Interactions With and Without Surface Cooling
,”
AIAA J.
,
14
(
4
), pp.
526
532
.
31.
Holden
,
M.
,
Wadhams
,
T.
,
MacLean
,
M.
, and
Mundy
,
E.
,
2010
, “
Experimental Studies of Shock Wave/Turbulent Boundary Layer Interaction in High Reynolds Number Supersonic and Hypersonic Flows to Evaluate the Performance of CFD Codes
,”
AIAA
Paper No. 2010-4468.
You do not currently have access to this content.